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Abstract

The force attracting a charged, insulative particle to a
nearby surface is often calculated by assuming that the total
charge is concentrated at the center of the particle. While this
is true when the particle is far away, there is evidence that a dif-
ferent model should be used when the particle is very close, or
in contact. This attractive force is calculated in terms of the bi-
spherical coordinate system, which provides an analytical solu-
tion valid when the particle approaches and contacts the surface.
Comparison of this model with other experimental and analytical
work is carried out to determine the validity of the various mod-
els, and to provide approximate formulas useful in engineering
work. This work indicates that electrostatic adhesive force may
be larger than normally expected when the surface charging is
larger than traditional assumption, as reported in several experi-
ments.

Introduction

The toner used in electrophotography carries a charge that
leads to attraction toward other objects, and eventually to adhe-
sion when it comes in contact. The electrostatic force is a rela-
tively long-range effect that dominates when the particle is several
diameters away, but it is just one of many possible forces of adhe-
sion once contact is made. These other forces, including van der
Waals force and surface tension, have been described in several
reviews [1, 2].

Electrostatic adhesion (and subsequent detachment) of toner
is the basis for all electrophotographic development engines, so
it is obviously important to identify the dominant effects so as to
understand how to control and modify the development process.
One approach is to compare experimental results to the predic-
tions of a theoretical model for the force.

The most common model of the electrostatic force on the
toner replaces the particle with a point charge at its center, lead-
ing to an adhesion force that is independent of the particle’s elec-
trical properties. This adhesion force, however, is often smaller
than experimental adhesion values, often by orders of magnitude
[3]. Several explanations for the failure of the central point charge
model have been offered.

If the particle has a finite dielectric constant, polarization ef-
fects [4], will increase the force exerted by the charge. Another
possibility is a patchy charge distribution related to surface rough-
ness [5], which tends to concentrate the charge at the point of con-
tact. Or, it may be that the van der Waals forces are so large that
they can overwhelm the electrostatic force [6].

Before deciding on which mechanisms play a role in toner
adhesion, it would be well to have an analytical model of the
electrostatic force that is both well-defined and useful for toner
charging. Previous models often assume that the charge is located
at the center of the toner particle, whereas charging by triboelec-
trification implies that the charge will be on the surface. Some
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neglect the effect of the particle’s permittivity, which distorts the
field near the contact. Others have described complicated infinite
summations that are difficult to apply quickly and correctly in an
engineering context.

The present paper presents an alternative approach to calcu-
lating the electrostatic adhesion force. It is based on a rather com-
plicated analytical solution for the electric fields around a charged
particle near a wall, but it presents the adhesion force as a short
analytical expression that gives the force for any size or dielectric
constant of the particle.

Force Calculation

The electrostatic force on the particle is obtained by integra-
tion of the Maxwell stress tensor, which requires knowledge of the
electric fields around the particle. These are obtained by solution
of Laplace’s equation in bispherical coordinates. This technique
has been used in the past to calculate forces on insulative [7] and
conductive [8] particles near a wall, but has not been applied to
particles with a surface charge distribution, which is the situation
for toner.

The toner particle is assumed to be an insulative sphere of
radius R and dielectric constant ks, with a total charge Q that
is distributed uniformly across its surface, as shown in Figure
1. The sphere is immersed in an ambient medium (normally air)

constant

6\= constant

n=20
conductive wall X

Figure 1. The bipolar coordinate system (bipolar.svg)

with a dielectric constant of k;, and separated from the conducting
ground plane by a distance H. In this paper, dimensioned quan-
tities will be written as upper case letters, and the corresponding
dimensionless quantities in lower case. Thus the normalized spac-
ing will be given by h = H/R.

Figure 1 also shows surfaces in the bispherical coordinate
system that will be used to calculate the force. The surface of
the sphere is at 11 = 7, and the ground plane is at n = 0. The
6 coordinate describes distances along the surfaces of the sphere
and plane.
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The electrostatic field is obtained by solving Laplace’s equa-
tion subject to the boundary conditions imposed at the ground
plane and the sphere. The solution technique, which is outlined
in the appendix, leads to an analytical expression for the force, in
the form of a convergent infinite series.

Attraction toward the wall

In bispherical coordinates, the particle is separated from the
wall by the distance &, so the basic result is the attractive force,
which is described in this section. In the following section, the
adhesive force will be obtained by taking the limit of very small
spacing. The attractive force is also useful in its own right, since
it influences the trajectories of particles moving near the wall, and
it may represent the apparent adhesive force if the particle is pre-
vented from actually touching the wall.

Comparison with earlier attraction models

Figure 2 show the variation of the attractive force as a func-
tion of spacing for particles with dielectric constants ranging from
Kk = 0 to k = oo. Two special cases, K = 1 and k = o are high-
lighted by the presence of circular dots. These two cases have
been described previously, so they serve as a check on the present
model.
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Figure 2.  Electrostatic attractive force as a function of spacing for various
dielectric constants (nipattraction.svg)

Perhaps the most common prior model is an image force cal-
culation that assumes that the total charge is concentrated at the
center of the sphere. This model neglects the effect of the dielec-
tric constant of the particle. In the present model, it is represented
by setting the relative dielectric constant of the particle to k =1,
corresponding to the lower curve with circles in Figure 2. The
image force for the central charge model is

0?
F = TomK,e0R? fi(h) M
where
1
filh) = A+h? 2)

is the normalized attractive force, and & = H /R is the normalized
spacing. This force is shown by the points in the figure, and it is
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clear that the two models are in complete agreement. In partic-
ular, both models predict that the adhesive force (at the point of
contact) is finite and equal to

Q2

_ 3
167k, 0R2 &

K
at least when the dielectric constant is unity. This result is identi-
cal to the central-charge approximation.

The upper dotted curve in Figure2 shows the attractive force
for an infinite dielectric constant (actually k¥ = 10%). It is well
known that the electrostatic fields outside an object with infinite
permittivity are identical to those outside a perfect conductor, so
this case can be compared to previous work [8] that found a good
approximation to the force on a charged conducting sphere as

1

L (h) ~
Fo(8) (ht12) (14 Llog (14 1/m)> @

using the same normalization for the force. This force on a con-
ducting sphere is shown by circular dots along the upper curve,
which again are in agreement with the present model. Thus the
results of the bispherical solution agree with the earlier limiting
cases, giving us some confidence in their validity.

Notice that the force on a charged conductor (or infinite di-
electric) continues to rise as the sphere gets closer to the ground
plane, and reaches infinity at the point of contact. In this case,
it is not possible to define an unambiguous electrostatic adhesive
force.

When the particle is far from the wall, the attraction force is
independent of the dielectric constant, and all the force calculation
merge in the lower right of Figure 2, corresponding to an attractive
force of

0? 1 0?

= — = 5
167k,e0R? W2 167K, E9H? ©)

K

This region is of little interest for adhesion, but plays an important
role in calculations of toner trajectory.

Effect of toner dielectric constant

Practical insulative toners have dielectric constants greater
than unity and less than infinity, so the two special cases dis-
cussed above are not directly applicable for toner force calcula-
tions. For that, we can consider normalized force curves for some
intermediate dielectric constants (x = 3, 10,30, 100) that are also
presented in Figure 2. The curves show that the force on the par-
ticle will always be greater than that implied by the central charge
model. This effect is greater as the dielectric constant increases,
and as the particle comes closer to the wall. Physically, the force
increases because more of the field is channeled through the par-
ticle to go directly to the ground plane, rather than through the
ambient medium. This leads to a more intense electric field in
the gap, and thus to a stronger force. Similar curves were pre-
sented by Fowlkes and Robinson [4] some time ago, for a 1-cm
sphere. The force was also calculated by Davis [7] in connection
with water droplets with a charge at the center. The present paper
extends those results by normalizing the results so that they can
more easily be applied to particles with arbitrary size and spacing.

Nakajima [9] also found a similar result, based on a model
of two spheres, one much larger than the other. His results also
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appear to be close to the present solution, which uses a flat plane
rather than a large sphere.

The lowest curve in Figure 2 shows the force when the par-
ticle has a dielectric constant that is much less than the ambient
medium. This could occur if the particle were a hollow shell in a
liquid or solid medium. The force is less than that for the other
cases, but is still finite. It should be noted however, that this is
the normalized force, and an increase in the dielectric constant
of the ambient medium will lead to a smaller attractive force, in
real terms. In any event, this case holds little interest for current
toners.

Adhesion to the wall

Using the analytical expression for the attraction force, we
can now proceed to find the adhesive force as the limit of the
attractive force when the particle touches the ground plane, or can
not get any closer to it.

Low dielectric constant

Most insulative toner has a relatively low dielectric constant.
The electrostatic adhesive force for dielectric constants below 10
is shown in Figure 3 as a function of the particle’s dielectric con-
stant. The small filled circles in this figure represent the adhe-
sive force calculated with the bipolar model, as described in the
Appendix. The four larger dots represent values obtained from
a finite-element approach by Feng and Hays [10] for a similar
problem having additional walls to bound the solution region. The
agreement between the numerical and analytical results is encour-

aging.
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Adhesive force as a function of dielectric constant (lokap-

For common values of toner dielectric constant (from 2 to
10), the adhesive force increases gradually with the dielectric con-
stant. The variation in force can be fitted fairly well by a function
of the form

Srlow (K) = 0.20 k¥ +0.70exp (0-12/k) (6)

which is valid for the range 0 < k¥ < 10. The fitted function is
shown by the solid line in Figure 3. Since the agreement appears
to be quite good, this equation will be used to calculate the elec-
trostatic adhesion force for a typical toner particle in a following
section.
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Hays and Sheflin [11] have given an approximation to the
adhesion force that includes the effect of surface coverage of the
toner, based on multipole expansions. Their result (in the limit of
Zero coverage) is

fee(K) = 0.75 4 0.22k +0.012k> @)

It is also shown in Figure 3 as a dashed line. It is not as close
to the analytical solution as Equation 6, but of course it includes
more variables than the present model, and is based on a slightly
different geometry.

High dielectric constant

Many particles of general interest, will have higher dielectric
constants. The normalized electrostatic adhesive force, as calcu-
lated from the bispherical model, is shown by the smaller dots in
Figure 4 as a function of the dielectric constant. As expected from
the previous discussion, the adhesive force continues to increase
gradually with the dielectric constant. The force grows slowly at
first, and then more rapidly to a value significantly higher than the
image charge approximation.
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Figure 4.  Electrostatic adhesive force for large dielectric constants (fit-

forceallkappasimpF.svg)

Although the variation is well behaved, the actual calcula-
tions are complex and lengthy. As before, we approximate them
by a function that is much more useful in practical work. This
function, which is shown as the solid line in Figure 4, is given by

fichigh (K) ~ 0.06 K/ exp (\/8/7> ®)

It gives very good agreement over the entire range of dielectric
constants (1 < x < 100), and is relatively simple, compared to the
calculations described in the Appendix. The presence of integers
in the functional dependence is interesting, since it suggests some
underlying simplification may be possible.

Effect of spacers

In some toner systems, the particles are prevented from mak-
ing physical contact with the substrate, perhaps by coating them
with an insulating additive powder like silica [12]. In that case, the
electrostatic “adhesive” force will be smaller, and will not reach
infinity even for very large dielectric constants. This behavior is
illustrated in Figure 5. for final spacings ranging from 2 = 0.1 to
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Figure 5.  Adhesive force as a function of dielectric constant when the

spacing remains finite (nipvskappaall.svg)

h=10.0001. The closest spacing (0.0001) would represent a phys-
ical spacing of 0.5 nm for a particle with a diameter of 10 um.

If the spacing is relatively large (& = 0.1), the force will not
be much bigger than the image force, even for very large dielec-
tric constants. For closer spacing, the force is much bigger, but
eventually reaches a limiting value that depends on the dielectric
constant. Most of the plastics that are used in insulative toner
have dielectric constants below 4, so the force reduction will only
be substantial if the spacing is greater than about 2 ~ 0.01. In
other words, a spacing of 50 nm will not appreciably decrease the
electrostatic adhesion force on a 10 pm particle.

Examples of toner adhesion

As an example of the approximations described above, con-
sider the adhesion of a typical toner particle, with a dielectric con-
stant of k¥ = 3, surrounded by air. Since the particle becomes
charged by triboelectric effects, the charge tends to be propor-
tional to the surface area, so it is a more physical approach to de-
scribe the force in terms of average surface charge density, which
is related to the total charge by

0 =4nR%c ®

Using this relation in the force expression (Equation 21 of the
Appendix) gives

nTR262
F=
Ka&p

f(x) (10)

With a given dielectric constant, the electrostatic adhesive
force will depend on the radius and the surface charge density.
A plot of the force as a function of charge density is given in
Figure 6 for toners with diameters of 7, 10, and 15 um. The
force increases with particle size, for a given charge density.
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Figure 6. Adhesive force as a function of surface charge density for various
toner diameters (nipphysicalradius.svg)

The charge densities shown in the figure range from 10 to
1000 uC/ m?, with the corresponding forces reaching to well over
1000 nN. At first glance, this might appear too high for prac-
tical consideration, since the breakdown strength of air is often
quoted as 3 V/m, equivalent to a surface charge density of about
25 uC/ m?. In the micron size range, however, much larger charge
levels are possible, and even common. For gaps smaller than
5 pum, such as those in development and transfer nips, the break-
down field is on the order of 68 V/m (600 uC/mz) [13].

Larger charge densities are not confined to near-contact situ-
ations. Air breakdown requires a large electrical field over a cer-
tain distance to allow avalanches to grow, and strong fields exist
only over a very short range near a small charged particle. Mea-
surements of toner have shown relatively large charge densities,
and the charge densities on smooth (liquid) particles with a di-
ameter of 5 um have been measured [14] at about 500 uC/ m?.
Thus there is considerable experimental evidence that the charge
on toner particles can be higher than 25 wm/m?, and may be over
an order of magnitude higher. Since the force is proportional to
the square of the charge, the electrostatic force could, in principle,
account for observed adhesion forces that are well over 100 nN.

Discussion

When the toner particle is far from the ground plane, the
central point charge model is always valid, and would be appro-
priate for calculations of particle trajectories. Close to the wall,
however, that model can only be valid when there is no difference
between the ambient and particle dielectric constants, a situation
that does not arise in electrophotographic development. For cal-
culation of adhesion forces, the dielectric constant of the particle
must always be taken into account.

The dielectric constant of the particle always leads to an in-
crease in the adhesive force. For typical toner particles, this in-
crease is a factor of 1.5 to 2 higher than that of the central-charge
model, and would be even higher for larger dielectric constants.
For any finite dielectric constant, however, the electrostatic adhe-
sion force is finite, even though some of the charge on the sur-
face is in “contact” with the grounded wall. The force does not
become infinite there because uniform surface charge leads to a
finite electrical field in the gap [5]. A different result might be ex-
pected if the charge distribution were modeled as a collection of
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point charges,[15], since a point charge, unlike a patch, will have
an infinite force at contact. This points out one problem of nu-
merical modeling near a singular point, and highlights the utility
of analytical solutions for adhesive forces.

The model presented here describes a particle with a uniform
surface charge. It does not account for patchy charge distributions
due to surface roughness or trapped charges, which can be ex-
pected to increase the adhesion. It also assumes that the particle
is insulative. In particular, it neglects the possibility that the par-
ticle surface is contaminated by moisture, which will increase the
conductivity, and can also lead to increased adhesive force [16].

Conductivity effects occur over a characteristic time, so their
importance will depend on the time that the particle will be close
to the substrate. In a development system, this might be a fraction
of a second. In a laboratory measurement of adhesive force, how-
ever, the time is likely to be much longer. If these time-dependent
effects play a role, such measurements of adhesive forces may not
be directly relevant to development design.

If the toner is blocked from reaching the substrate, the ap-
parent adhesion force will be less than the force for true contact
between the toner and substrate. The reduction is stronger when
the particle has a higher dielectric constant. For typical toners, a
substantial reduction in adhesion can be obtained by separations
greater than H ~ 0.01R.

Finally, the approximate adhesion formulas derived here pro-
vide a much easier way to incorporate realistic adhesion calcula-
tions into toner and development design. These formulas are

. 0 0.20 K +0.70exp (0-12/x) ,0 <k < 10
' TnkaeoR 0.06 K72 exp (\/S/K) 1<K <100
(11)
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Appendix: Outline of force calculation

The solution for the force in the bipolar coordinate system is
rather lengthy, so only an outline of the procedure can be given
here. The sphere has a a radius R, a dielectric constant ks and
carries a uniform surface charge density o. The potential will be
normalized to the potential on the isolated charged sphere, so that

OR
Ka&o

P =Vip = ¢ (12)

where V; is the potential on a charged sphere far from ground.
The lowercase ¢ is the dimensionless potential. It must be zero at
the ground plane, continuous across the surface of the sphere, and
finite inside the sphere. The solution of Laplace’s equation that

303



satisfies these conditions takes the form [17]
sinh[(n+1/2)n]
" Sinh [(n+1/2)1]

exp[—(n+1/2)n]
" exp[—(n+1/2)7s]

¢a = (coshn — cos 8)'/2 Z P, (cos 0)

¢p = (coshn —cos 0) 172 Z P, (cos0)

13)

where the subscripts (a,p) denote the solution in the ambient fluid
and the particle.

In order to satisfy the last boundary condition, and to evalu-
ate the force, the 17- component of the electric field is needed. It
is given by
coshn —cos® d¢

E=—
Rsinhng  dn

(14)
At the surface of the sphere, there is a discontinuity in the
normal electric field given by

=

ZO[KEpﬁn(ns, 0) — En(ns, 0)] =

e (15)

where o is the uniform surface charge density on the sphere, given
by

Q
 4nR? (16)
and K = K,/K, is the ratio of dielectric constants for the particle
and the ambient.
The E- field is normalized as
c

E =
P (17)

(The lower case e is not an exponential, but a normalized field.)
This allows the boundary condition to be written as

()] = — 2sinhng

~ Jcoshgy —x

where x = cos 0, and the coefficients @, and b,, depend on 7 and

k, and are given by

(142n) cosh () (i + coth[(n+ 1/2) 1))

+ (k—1) sinh(ng) (19)
bp = (142n) (K +coth[(n+1/2) ns])

The coefficients A, are obtained by the orthogonal expansion
of the final boundary condition (Equation 15) in Legendre poly-
nomials over the surface of the sphere (—1 < x < 1), giving an
infinite set of equations of the form

Z n (an+byx) P, (18)

an—z

b —

P Sy S A g
0 ai 2 1, S
3 Z?b > 3(1)7 Al ?],e 5%
a — s

0 5 ;bz 75 32 = —2V/2sinh ¢
3 - s

0 0 3 7 3 7¢ 2
(20)
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In practice, the solution converges for a finite subset of the equa-
tions, as determined by examining the change in the result after in-
creasing the number of equations by 50%. In this paper, a change
of less than 0.01% was considered sufficient.

The force on the sphere is given by integrating the electro-
static stress tensor over a surface that encloses the sphere [18],

0? " eE? RZsinh® 7 sin@
= f= — ———————d6d 21
167K, €0 R2 f 2 (coshn —cos 6)2 v 2D

where f is the normalized force. Here the surface was bounded
by the ground plane 17 = 0, and extended to infinity, so the nor-
malized force is given by

=l [ e

The electric field at the ground plane is given by Equation 14

smh2 TN sin @

— -dod 22
1—0099) ody (22)

as
eg(n,e):—% 1 —cosh)? ZG,, 75, k) Py (cosB)
(23)
where
Gn (M, ) = A (1s,%) (142n) csch(ns (n+1/2))  (24)

is the coefficient in the ground-plane expansion for the field. Us-
ing the geometrical relations of the bispherical coordinate system
allows us to replace 15 with

1Ms = acosh (1 +h) (25)

Squaring the field, and carrying out the integral in Equation
22 gives the force as

l 2 1 > 2 2 4l’l
= -G+~ G2 —
=3 0+4Z 2n+1" (2n+1)2n—1)

n=1

anlGn

(26)

This sum can be truncated with the same method and accuracy
goal as the calculation of the A,,.
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