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Abstract 
Stability of a conducting drop hanging from a nozzle in an 

electric field was examined theoretically. With this static model, 
stability of electrostatic inkjet process was estimated. The basic 
equations are the augmented Young-Laplace equation for drop 
shape and the Laplace equation for electric field. These coupled 
equations were solved by the Finite Element Method. By the initial 
condition of its shape, a drop could be deformed into different 
shapes, such as “conical shape,” “nipple” or “dog bone” with the 
increment of non-dimensional electric field. The concentration of 
electric field around the corner of a nozzle was found to be the 
cause of these multiple shapes. 

Introduction 
Since the first inkjet printer, “Mingograph” appeared in 

market from Seimens Co., Ltd. [1][2], the inkjet technology has 
progressed tremendously in quality and print speed. Although the 
electrostatic inkjet technology has not applied to commercial 
printers, it is attractive in the industrial application. It can make 
various forms of jet, such as individual drop (drop on demand), 
micro spray or spindle that could be utilized to make fibers. 
Additionally, it could jet highly viscous liquid [3] and make such a 
super fine drop as less than 1 femto litter. Fundamental studies are 
indispensable to apply this technology to industrial usage. In this 
point of view, stability of an electrified drop hanging from a 
nozzle was examined theoretically. Although the jetting is totally a 
dynamic process, it was found that the electro-hydrostatic 
approach was useful to estimate how the stable jet was achieved. 
Also the converged solution of the static problem can provide the 
initial condition of the dynamic problem in the future. 

The equilibrium shape of an inviscid and conductive drop 
hanging from a nozzle is governed by the augmented Young-
Laplace equation that describes the balance of the forces from 
surface tension, gravity, hydrostatic and electrostatic pressures on 
the interface [4][5]. Without corona discharge, the electrostatic 
pressure is governed by a linear differential equation, the Laplace 
equation. The drop shape is unknown a priori, varied with the 
increment of the electrostatic pressure so that these equations 
should be coupled and both the drop shape and the electric field 
should be solved simultaneously. Basaran et al. [4][5] and Harris et 
al. [6][7] studied the similar problems with the same equations, 
although their interest was limited to parallel-plates geometry. 
Tsukada et al. [8] examined nozzle-plate geometry, which was 
relevant to the jetting process, both theoretically and 
experimentally. Tsukada et al., however, did not study the effect of 
geometrical parameters, such as the nozzle length or the gap 
between the nozzle and plate, on the shapes and stability of 
electrified drops. Providing the effect of the parameters is the goal 
of this paper.  

Theoretical Model 

Calculation Domain 
Similar geometry that Harris et al. [6] used is examined. Fig. 

1 shows an axisymmetric, conducting drop hanging from a nozzle 
of length H2. The nozzle is at potential u0 and the bottom plate, a 
distance H1 from it, is grounded. L is length between center of the 
axis and asymptotic boundary of calculation domain. The 
horizontal plane z = 0 is located at the tip of the nozzle. The z-axis 
is parallel to gravity. 

 
Fig. 1 Axsymmmetric drop hanging from a nozzle in the presence of an 
electric field 

Two coordinate systems are used with the origins of both 
systems located in the plane z = 0 along the axis of symmetry. A 
spherical coordinate system (r, θ, φ) is applied to the domain V1, a 
gray zone of Fig. 1, where r is the radial coordinate and θ and φ 
are the meridional and azimuthal angles, respectively. A 
cylindrical coordinate system (x, φ, z), where x is the projection of 
r onto the plane z = 0, is applied to all other domains. Because an 
unbounded domain is impracticable, the length L must be finite. To 
reduce the influence of the length L, cylindrical coordinate domain 
V1’ is added to the domain V1. 

Governing Equations and Boundary Conditions 
The inviscid drop shape and the electrostatic field are 

governed by the augmented Young-Laplace and Laplace equations 
as follows;  

LVnLVs SonNeEGzKn 2++=⋅∇ , (1) 

21
2 &0 VVinU =∇ . (2) 

Two dimensionless numbers are defined; electrical Bond number 
as Ne ≡ εR/2σR and gravitational Bond number as G ≡ gR2Δρ/σ. A 
drop is so small that the gravitational Bond number is negligible. 
Equations (1) and (2) have already been dimensionless. Lengths 
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are measured in unit of R and potential U is in unit of u0. Here, σ is 
the surface tension of a drop and Δρ is the density difference 
between the drop and the ambient fluid. nLV is the unit normal 
vector of the drop surface. En (≡ R nE~ /u0, nE~  is dimensional) 
denotes the normal component of the electric field. Reference 
pressure K (≡ RΔp0/σ) is the pressure difference Δp0 between the 
drop and the ambient fluid in the horizontal plane z = 0. The 
reference pressure K is set by constraining the drop volume to be a 
fixed amount V0: 

0VV = . (3) 
 The governing equations (1) and (2) are solved subject to the 
boundary conditions: 
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Equilibrium Drop Shape in the Absence of External 
Forces 

When gravitational and electrical forces are negligibly small 
compared to surface tension forces, equilibrium drop shapes are 
segments of spheres as shown in Fig. 2. The drop shape is 
expressed in terms of the single parameter D (= d/R), the ratio to 
the radius R of the signed distance from the center of the sphere to 
the tip of the nozzle. The shape function is  

2 2( ) cos 1 ( sin )f θ D θ D D θ= + + −  (5). 
When D = 0 the drop is a hemisphere; as D > -1, the drop vanishes. 
The radius of nozzle is fixed to unit length. 
 

 
Fig. 2 Equilibrium drop shapes when Ne = 0 and G = 0. 

Numerical Analysis 
The domain is tessellated into a set of quadrilateral elements, 

as shown in Fig. 3. In the domain V1 the elements are bordered by 
the fixed spines in r-direction and by the curves in θ-direction, 
which move proportionally to the free surface along the spines [9]. 
Because the domain is axisymmetric, only the domain of positive 
x-direction is calculated. 

 
Fig. 3 An example of physical domain of calculation divided into finite 
elements. The figure above shows isoparametric mapping from/to physical 
domain to/from calculation domain. 

The equations (1) and (2) are coupled and solved by the 
Galerkin Finite Element Method (GFEM) simultaneously. 
Mutiplying equations (1) and (2) by weighting functions which are 
identical to the bi-quadratic basis functions and integrating them 
by parts, weak forms of the equations (1) and (2) are obtained. 
Without the boundary conditions, they are 
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Here, S and I denote numbers of nodes. 
Electric potential and drop shape are isoparametrically 

mapped onto the calculation domain [10] and expressed by the bi-
quadratic basis functions as follows; 
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So far, N = S + I residuals and unknowns (β, α) are defined. The 
volume constraint (4) is rewritten as the N + 1st residual, 

001 =−=≡+ VVRR VC
N . (10) 

To search for the turning points (TP), another residual is defined 
which specifies an adaptive choice of parameter P, 

002 =Δ−−=+ PPPRN , (11) 
where P0 is the value of the parameter at a known solution ω* on a 
family of solutions and the parameter step size ΔP is a specified 
increment to a new solution of R(ω) on the same family. The 
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method of choosing the parameter P from among ω is described by 
Abott [11]. At the start of calculation the electric Bond number Ne 
is chosen as the parameter P. Finally the N + 2 residuals and 
unknown vector are defined respectively as R(ω) ≡ (RVC, RN+2, 
RYL, RL), ω ≡ (K, Ne, β, α). The nonlinear set of N + 2 algebraic 
equations R(ω) = 0 is solved simultaneously by Newton’s method. 
With initial guess, ω(0), k + 1st (k = 1,2,…) solution can be solved 
as follows; 

)())(( )()()1()( kkkk RJ ωωωω −=−+  (12) 

Here J(ω) is a Jacobian matrix. By applying boundary conditions 
(4), the equation (12) is solved iteratively until the L2-norm of 
residuals R(ω(k)) were less than a prescribed tolerance Δe. Quality 
of initial guess is critical for Newton method. With the following 
initial guess, all the calculations were converged quadratically 
within 8 iterations. 
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Results 

Stability analysis of equilibrium drops 
Fig. 4 shows the effect of a distance H1 from the bottom plate 

on aspect ratio of initially hemispherical drops as the parameter P 
increases. The aspect ratio, a/b is defined as a/b ≡ f(θ = 0)/R(=1). 
It is reasonable that higher electric potential is required to obtain 
the same aspect ratio when H1 is widened. The drop shapes are 
stable up to turning points in effective potential and beyond the 
turning points, drops become unstable. By applying the scheme 
that Abott proposed [11], the family of calculation could be 
continued into unstable parameter space. 
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Fig. 4 The effect of a distance H1 from the bottom plate on the aspect 
ratio. G = 0, H2 = 100, L = 100, D = 0. 

Drop shapes 
Figs. 5 to 7 show the effect of the drop shape parameter D on 

the evolution of drop shapes with effective electrical potential. All 
other geometrical parameters are fixed. In Fig. 5, initially 
hemispherical drop (Ne1/2 = 0, solid curve) deforms as the potential 
rises until turning point, Ne1/2 = 1.74 (broken curve). Although 
effective potential decreases over the turning point, the drop 
deforms furthermore toward conical shape. Assumed that radius of 
nozzle is 0.1 mm and the drop is tap water, the permittivity of 
which is 7.17 × 10-10 s4A2/m3kg and the surface tension σ = 73 
mN/m, the dimensional electrical potential at nozzle u~  is equal to 
248V at the turning point. 
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Fig. 5 Evolution of drop shapes with effective potential when G = 0, H1 = 
10, H2 = 100, L = 100, D = 0. 
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Fig. 6 Evolution of drop shapes with effective potential when G = 0, H1 = 
10, H2 = 100, L = 100, D = -0.65. 
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Fig. 7  Evolution of drop shapes with effective potential when G = 0, H1 = 
10, H2 = 100, L = 100, D = -0.7. 

In Figs. 6 and 7, drops form anomalous shapes, called nipple 
and dog-bone, respectively [6]. Such dog-bone shapes have been 
observed in experiment [12]. More than two peaks of drop shape 
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are thought to be the sites of jetting drops. Cloupeau and Prune-
Foch summarized main functioning modes of electrostatic 
spraying of liquids [13]. The cases of Figs. 6 and 7 resemble onset 
of multijet mode in which several jetting sites are established 
around the end of the capillary [13]. 

The equilibrium drop shape is determined by the balance of 
forces from surface tension, hydrostatic and electrostatic pressure. 
Among all the forces on a drop the origin of such anomalous 
shapes as nipple and dog-bone is distribution of electrostatic force 
on the drop surface. Fig. 8 shows the electrostatic field 
surrounding the drop in Fig. 7 at Ne1/2 = 2.46, at the case which 
deforms to dog-bone shape. Strong electrostatic field near the 
corner of a nozzle elongates the drop toward positive x-direction to 
be dog-bone shape. Nipple is in-between cone and dog-bone, 
appeared in only small range of effective electrostatic potential. 

 
Fig. 8 Electrostatic field surrounding a nozzle when G = 0, H1 = 10, H2 = 
100, L = 100, D = -0.7, Ne1/2 = 2.46. ＊Limited area is shown. 

Concluding remarks 
Stability of a drop hanging from a nozzle in an electric field 

was examined theoretically. 
1) Higher electric potential is required to obtain the same 

aspect ratio when the distance H1 is widened. At small 
distance H1, turning point of stability appears. 

2) As drop shape parameter D decreases from 0 to -1, drop 
shapes transit from conical shapes to nipple-like shapes 
to dog-bone shapes. Concentration of electric field 
around the corner of a nozzle is the cause of these 
multiple shapes. 

At narrow gap between nozzle and plate, drop can be jetted at 
relatively low electrical potential. Concentration of electric field 
around the corner of a nozzle, however, could form multiple sites 

of jetting. The nozzle shape and appropriate set-ups of nozzle and 
parameters, such as electric potential should be considered for 
stable jetting. Although the foregoing results are equilibrium 
profiles provided that the drop volume is constant, they can 
suggest the way to achieve stable electrostatic inkjet process. Also 
they can be the guidance to the studies of dynamic phenomena. 
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