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Abstract 
Azo pigments are typical of the classical pigments used 

widely in painting and imaging industries. In azo pigments, 
however, there is still a pending problem associated with the azo 
or hydrazone structure in the solid state. As a step to clarify this, 
we initiated our investigation on the crystal structure of methyl 
orange and its derivaqtives that are typical of simple azo 
compounds. Then, we found a different phase of 4-
(dimethylamino)azobenzene-4’-sulfonic acid (MOH) from that 
reported by Burke et al. Because of this, electronic structure of 
both phases has been studied in the present investigation on the 
basis of the crystal structure as well as DFT calculations. A 
striking difference is observed between two crystal structures, 
showing that the previous phase is red as characterized by a 
zwitterionic structure; whereas purple in the new phase. 
Interesting to say, DFT calculation revealed that the zwitterionic 
structure (that exists only in the solid state) gives an absorption 
band at a far longer wavelength of about 660 nm as compared 
with that of the ordinary MOH structure (about 420 nm). It is this 
longer wavelength band that gives a red color in the zwitterionic 
phase; whereas the absorption band lies in the shorter wavelength 
of the visible region in the purple phase. 

Introduction 
Azo pigments are typical of the classical pigments used 

widely in painting and imaging industries. In azo pigments, 
however, there is still a pending problem associated with the azo 
or hydrazone structure in the solid state. That is, on the one hand, 
the azo compounds are characterized by the azo group (−N=N−) in 
open literature. On the other hand, some types of azo pigments are 
also known to possess the hydrazone structure (=N−NH−), often 
leading to the formation of intramolecular hydrogen bonds [1]. 
Even today, the present basic problem remains still unsettled. To 
clarify this, we believed that the simple azo compounds such as 4-
(dimethylamino)azobenzene-4’-sulfonic acid (MOH: Fig. 1(a)) or 
its sodium salt (methyl orange (MO): Fig. 1(b)) are ideal, as the 
first step, for the fundamental elucidation on the correlation 
between the crystal and electronic structures, because the 
chromophore (phenyl-azo-phenyl) and auxochromes (dimethyl 
amine and sulfonic group, or sodium sulfonate) in MOH and MO 
are quite definite. For this reason, we focused in the present 
investigation on MOH and MO. 

Hanson [2] and Kennedy et al. [3] investigated independently 
the structure of hydrated MOs and reported that the N/N bond is 
typical of the azo structure (1.24 Å). On the other hand, Burke et 
al. studied the structure of MOH and found a zwitterionic structure 
in the solid state: −O3SC6H4NH+=NC6H4NMe2. Furthermore, the 
present zwitterionic form is caused by NH···O intermolecular 
hydrogen bonds between the NH group of one molecule and the O 
atom of the neighboring sulfonic group [4]. In addition, this 

structure reveals a lengthening of the N=N bond to 1.307(3) Å, 
indicating a hydrozone-like structure. The color of MOH is red 
violet which is strikingly different from the color of MO (orange). 
This motivated us to study in details the electronic structure of 
MOH and MO. In the course of this study, we found a new phase 
of MOH whose color is purple. 

The present paper deals with the crystal and electronic 
structure of both polymorphs of MOH. The first part describes the 
solution spectra in the initial, deprotonated and protonated states of 
MOH together with DFT calculations; whereas the latter part 
presents the reflection spectra measured on singles of MOH by 
means of a microscope spectrophotometer. 

 
Figure 1. Molecular structure: (a) MOH and (b) MO 

 
Figure 2. Hydrogen-bonded two molecules reported by Burke et al. 
(zwitterionic phase) 

Experimental 

Density-functional theory (DFT) calculations 
DFT calculations were carried out on the following 

conformations as shown in Fig. 3: (a) initial state, (b) deprotonated 
state, (c) protonated state, and (d) zwitterionic state. Geometry 
optimization was carried out using the density-functional method 
with B3LYP hybrid functional [5, 6] together with 6-31+G(d) 
basis set using the Gaussian 03 suite of programs [7]. 
Spectroscopic calculations were then carried out on the optimized 
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geometries based on the time-dependent density-functional theory 
(TD-DFT) using the 6-31+G(d) basis set.  

 
Figure 3. Initial structures for DFT calculations 

Protonation and deprotonation in solution 
Protonation and deprotonation experiments were carried out 

by successively adding a small amount of 0.002 M hydrochloric 
acid (HCl) and of 0.002 M sodium hydroxide to an aqueous 
solution of MOH under N2 (degassed). The absorption spectra as 
well as electrical conductivity of the solution (“conductometric 
titration”) were monitored in every titration during the 
experiments. 

Crystal growth and structure analysis 
Single crystals of MOH were grown from an aqueous 

solution. After 72 hours, a number of red platelet single crystals 
and purple needle-like single crystals were obtained at the same 
time. 

Reflection data were collected on R-AXIS RAPID-F 
diffractometer from Rigaku using CuKα radiation (λ = 1.5418 Å) 
at −180 °C. The structure was solved by direct methods (SIR2004 
[8]) and refinement was carried out by the full matrix least squares 
method of F2 (SHELXL-97 [9]). 

Equipment and measurements 
Both diffuse reflectance spectra and solution spectra were 

recorded on a UV-2400PC spectrophotometer (Shimadzu), the 
former measurements were recorded using an ISR-240A 
integrating sphere attachment. Reflection spectra on single crystals 
were measured by means of a UMSP80 microscope-
spectrophotometer (Carl Zeiss). An Ultrafluar (×10) objective was 
used together with a Nicol-type polarizer. Reflectivities were 
corrected relative to the reflection standard of silicon carbide. 

Results and Discussion 

Solution state 

DFT caluculations of several molecular configurations 
Table 1 shows the N=N bond length obtained from the 

optimized geometry together with spectroscopic calculations for 
the initial, deprotonated, protonated, ands zwitterionic states. The 
N=N bond around 1.26-1.29 Å is near to the double bond length of 
1.24 Å rather than 1.44 Å for the N−N single bond, suggesting that 
the molecule is the azo type. Deprotonation brings about little 
spetral shift (λ = 421.6 nm); whereas a larger bathochromic 
displacement is observed by protonation (λ = 453.7 nm). On the 
other hand, a drastic bathochromic shift occurs with the 

zwiterionic structure (λ = 658.5 nm). It is also to be noted that the 
zwiterionic structure exists only in the solid state, not in solution. 

Table 1: Calculated N=N bond lengths and optical absorption 

 

Deprotonation of MOH in solution 
Fig. 4(a) shows the conductometric titration of MOH with 

NaOH for deprotonation experiment of MOH. The conductivity of 
the solution increases linearly from the commencement of the 
titration. This represents the neutralization of the acid (MOH). 
From point A, the conductivity increases with higher gradient. 
Point A corresponds exactly to equivalence point. This indicates 
that deprotonation is completed at point A. 

The absorption spectra from the initial point to point A are 
shown in Fig. 4(b). The spectral change during the deprotonation 
is very little. This is in good agreement with the DFT calculations 
(Table 1). whereas the deprotonated species give a maximum at 
464 nm. This hypsochromic shift is very small and this trend is 
well reproduced in the results of DFT-calculations. 

 
Figure 4. (a) Conductmetric titration of MOH aqueous solution (2×10-5 M; 100 
ml) with NaOH and (b) solution spectra of MOH upon deprotonation 
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Protonation of MOH in solution 
 Fig. 5(a) shows the conductometric titration for protonation 

of MOH. In contrast to the quantitative titration in deprotonation 
experiment, roughly thirty times more HCl is necessary for the 
protonation of MOH due to solvation effect with water-molecules. 

Fig. 5(b) shows the spectral changes during the protonation, 
characterized by two isosbestic points at 350 and 470 nm. A 
relatively large bathochromic shift is observed upon protonation. 
This agrees fairly well with the calculated absorption bands. 

 
Figure 5. (a) Conductmetric titration of MOH aqueous solution (2×10-5 M; 100 
ml) with HCl and (b) solution spectra of MOH upon protonation 

Solid state 

Crystal structure of purple phase of MOH 
Table 2 details the crystallographic parameters of the purple 

phase (i.e. the new phase) together with those of the red phase (i.e. 
zwitterionic phase [4]). The structure analysis of the purple phase 
is yet not entirely refined at the moment. Further refinement is 
necessary. 

In the unit cell of the purple phase, there are two independent 
molecules. The ORTEP plot of the purple phase is shown in Fig. 
6(a). The present structure reveals that the N=N bond lengths are 
1.218(19) and 1.236(17) Å, which are typical of the azo group 
(−N=N−).  Furthermore, it is to be noted that one of the S/O bonds 
is apparently longer (1.449(15) Å) than the other two bonds 

(1.353(18) and 1.363(18) Å), suggesting the sulfonic group 
(−SO3H).  

Fig. 6(b) shows the molecular arrangement of the molecules 
projected onto the (100) plane. Two molecules are nearly directly 
overlapped, showing that the slip angle of the two molecules is 
below 54.7°, displacing the absorption band toward shorter 
wavelengths due to excitonic interactions. 

Table 2: Crystallographic parameters for the purple phase and 
red phase 

 

 
Figure 6. (a) Molecular conformation and (b) molecular arrangement of the 
purple phase 
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Solid state spectra 
Fig. 7 shows the polarized reflection spectra measured on the 

(001) plane of single crystals of the red phase (i.e. zwiterionic 
phase). A prominent reflection band appears around 590 nm for 
polarization parallel to the a-axis, that is, the direction of the long-
molecular axis. On the other hand, the reflection band is 
completely quenched for polarization perpendicular to the a-axis. 
These results clearly indicate that the direction of the transition 
dipole points along the long-molecular axis in accord with 
direction deduced from DFT calculations. It is also important to 
note that the reflection band at the longest-wavelength is due to the 
zwitterionic structure which exists only in the solid state. Because 
of this band, the crystals look red in the zwitterionic phase. 

 
Figure 7. Polarized reflection spectra measured on the (001) plane of single 
crystals of the red phase 

Fig. 8 shows the non-polarized reflection spectra measured on 
single crystals of the purple phase (i.e. the new phase). A 
prominent reflection band appears around 420 nm which yield a 
color of purple. The present band is apparently displaced shorter 
wavelength as compared with the absorption band in solution (Fig. 
4(b)). This is presumably attributed to the molecular arrangement 
Fig. 6(b), in which the slip angle of the two overlapped molecules 
is below 54.7°. 

 
Figure 8. Reflection spectrum on single crystals of the purple phase 

Conclusions 
Electronic characterization has been made on the polymorph 

of MOH. The red phase is characterized by the zwitterionic 
structure in the crystal lattice; whereas the typical azo form exists 
in the purple phase, in which two molecules are nearly directly 
overlapped with a slip angle below 54.7°. The zwitterionic 
structure is responsible for the red color in the red phase. On the 
other hand, the hypsochromically shifted absorption band as 
compared with that in solution gives rise to a purple color. 
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