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Abstract

Printer qualification is an important process to ensure that a
newly designed printer works accordingly to specifications. Tra-
ditionally, image screening is a part of the process that is rather
labor intensive. In this work, we develop an automated prescreen-
ing tool, along with an image fidelity metric to reduce the work-
load of expert observers involved in screening the softcopy test
images. This tool works for a wide range of image types and con-
tent.

Introduction

Electrophotographic (EP) printers are very complex image
reproduction devices. When an image is sent to a printer, the data
are processed through an imaging pipeline and finally turned into
patterns of dots on a piece of paper. For a newly designed printer,
it is extremely important to ensure that the entire imaging pipeline
is working accordingly to specification. Tests are designed to ver-
ify the correctness of the output at various stages of the imaging
pipeline. The output can be a digital image or a hardcopy image.
The output image is then compared to a reference image to assess
the correct functioning of the new printer. Often the reference
image is obtained from an earlier product that is known to func-
tion correctly. We will refer to the reference image and the output
image as the master image and the current image, respectively,
throughout this paper.

In the process of developing a follow-on printer model or
an upgrade to an existing model, many changes may have been
made to the image rendering pipeline. The fonts, the halftone
screen, the color tables, and the page settings may all be different.
Any one of these changes, as well as numerous others, will result
in differences at many pixel locations between the current and
master images. Traditionally, the judgement of a human observer
has been needed to determine whether or not the current image
is a qualitatively acceptable match to the master image. If there
is a mismatch, the developers will investigate the causes of the
differences so that the problem can be resolved.

The qualification process requires many trained (expert) ob-
servers to compare thousands of softcopy and hardcopy master-
current image pairs. The developers will only investigate master-
current pairs with visually significant differences that the expert
observers have identified. This is a very time-consuming and
costly process. Generally, only a fraction of the existing tens of
thousands of master images are tested before a product is rolled
out due to relatively short development time. It is highly desir-
able to have an automated tool that will offload part of the work
of the expert observers while increasing the number of images that
can be tested before the product is released. This is feasible par-
ticularly for cases in which softcopy master-current image pairs
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are compared. In this paper, we will focus on the digital master-
current pairs in the qualification process. Consequently, we will
exclude print quality defects such as banding, color plane misreg-
istration, repetitive marks, and streaks, which are related to the
print mechanism and marking technology in the print engine [1].

Image Fidelity

A current image may be rendered in an orientation different
from that of its master, i.e portrait versus landscape or vice versa.
This will be the case when the master page is generated using a
product that prints pages in an orientation that is different from
the current product. The content of the current image may also be
spatially shifted slightly from that of the master image. An expert
observer will ignore the difference in orientation, minor spatial
shifts in content, and error pixels that are sporadically scattered
around text, synthetic graphics, and halftone graphics when com-
paring the image pairs. To mimic the judgement of an observer
on the differences between two images, a human visual system
model-based metric is needed.

The topic of image quality has been extensively investigated
in the literature [2, 3, 4, 5], and image quality is certainly an im-
portant factor in judging the success of a new printer. However,
the goal of our application is to develop a tool that judges image
fidelity instead of image quality. Since there is a rather weak re-
lation between image fidelity and image quality [6], we will only
focus on image fidelity from this point onwards.

Many metrics have been introduced over the years to gauge
image fidelity. These metrics can be classified into two different
categories. Metrics in the first category do not take into consid-
eration the spatial interaction of pixels. Root mean square error,
peak signal to noise ratio (PSNR), AE;+«, and Kullback-Leibler
gain [7] are examples of metrics that fall into this category. While
being very simple and appealing computationally, these metrics
do not account for spatial processing taking place in the human
visual system. The difference between the current and master im-
age pair is inevitably averaged over all the pixels in the images.
Consequently, these metrics will fail to distinguish an image pair
with a small but visually significant cluster of pixels in error from
an image pair with the same number of pixels in error but with
these pixels scattered uniformly throughout the image. The latter
case may not be noticeable at all even if the magnitude of the av-
erage error is the same for both cases. On the other hand, human
visual system model-based fidelity predictors such as Daly’s vis-
ible differences predictor [8], Taylor’s image fidelity assessor [9]
and Wu’s [10] color image fidelity assessor belong to the second
category. These algorithms account for several different aspects
of information processing in the human visual system, including
spatial processing. Taylor’s [9] and Wu’s [10] results were also
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validated with psychophysical experiments. These models are ef-
fective; but they are also computationally expensive. The output
of these models is a probability map instead of a single number
that is much more suitable for our application. Furthermore, these
models were not tested with very high resolution images. It is not
clear how scalable they are nor how well they will work with the
high spatial frequency content that is crucial for our application.
The structural similarity image metric (SSIM) also takes spatial
interaction of pixels into account but does not apply any human
visual system model directly [11]. Instead, the SSIM applies the
first and second order statistics of the luminance channel infor-
mation in a local neighborhood to compare images. The overall
image quality is evaluated using the mean of the SSIMs (MSSIM)
in all the local neighborhoods. It is not evident in this metric if
the size of the local neighborhood should vary accordingly to the
resolution of the image pairs. Luminance information alone also
may not be sufficient to pick up differences in hue and chroma.
In addition, the MSSIM also suffers from the same averaging ef-
fect as the metrics in the first category. Weight assignment is not
obvious if a weighted average model is used.

In this paper, we will present a fidelity metric that can be
trained to mimic the decisions of expert observers based on exam-
ination of a set of master-current pairs accompanied by observers’
decisions. Due to the constraint on processing speed, this metric
is designed only to screen out images with visually insignificant,
or at the other extreme, highly objectionable differences between
the master and the current images.

Prescreening tool

The automated prescreening tool assesses the fidelity of a
current image with respect to the corresponding master image.
It will categorize the assessment into three categories: passed,
failed, and further evaluation required. Both the expert observers
and the developers will never have to examine the image pairs
rated as “"passed”, since the differences are visually insignificant.
For the image pairs flagged as ‘failed’, the differences are highly
objectionable. These images will go directly to the developers to
investigate the causes for the differences. Image pairs that fall
in between the ‘passed’ and the ‘failed’ category are classified
as ‘further evaluation required’. The expert observers will screen
these image pairs manually, and categorize the image pairs into
the ‘passed’ and ‘failed’ groups based on the visual significance
of the differences. The developers will study only the failed cases.
With this tool, the expert observers need only focus on the master-
current pairs that are flagged as ‘further evaluation required’.

In this paper, we will assume that the master-current image
pairs have been preprocessed and prepared for comparison. The
current image C is assumed to have the same orientation as the
master image M, and the spatial shift between the entire content
of the master image and that of the current image is assumed to
have been corrected. The corrected current image is denoted as C.
The term ‘current image’ now will be understood to mean the cor-
rected current image. In addition, the size, resolution, and image
type (color, indexed color, grayscale, or bilevel) of the current-
master image pairs are assumed to be available during the com-
parison.

In the following subsection, we will present a fidelity met-
ric we have developed to compare these images. This metric pro-
duces a single number to indicate the degree of difference between
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the master and the corresponding current image. This number is
further thresholded to classify the images into the three categories
mentioned earlier. This fidelity metric will be referred to as the
error metric from this point onwards.

In the rest of this paper, we will represent vectors and images
using boldface lowercase letters and boldface uppercase letters,
respectively. The superscript ( o)T is used to indicate the transpose
of a vector or a matrix.

Error metric

Using the pixels of the master image as the reference, if the
color of a pixel in the current image differs from that of the pixel
at the same spatial location in the master image, the difference
can be interpreted as an error. Thus, for each master-current im-
age pair, a 2D error map E can be obtained using the following
equation

E( )= { ey —s€anl,zr

0, otherwise.

Here g(e) can be an operator that transforms the color value to a
more perceptually uniform color space, such as the CIE L*a*b*
color space. The threshold 7' may be selected so that only percep-
tible color differences are considered to be errors. Kuehni et al
reported that on average, the 50% level of acceptability for small
color differences in the CIE L*a*b* space is about one unit of AE
[12]. To be conservative, we choose T = 0.6 AE.

While computing the error map, the number of pixels in error
is also counted. If this number is smaller than a threshold, these
differences may be ignored and no further processing is required.
In this case, the prescreening tool passes the image pair. However,
caution must be exercised given the fact that this threshold will
depend on the resolution of the images. If the differences are
not negligible, then the error map is clustered based on spatial
proximity of the pixels in error so that we can analyze the error
of each cluster locally. From this point onward, E is assumed
to contain clusters of pixels whose corresponding locations in the
current image are the pixels in error. These error pixels are labeled
according to the clusters to which they belong.

Bilevel images

Let the pixel at the spatial location (i, j) with E(i, j) = k be
the I pixel of the k’” cluster in the error map. The corresponding
pixel in the master image, M(7', j') is first located. For notational
simplicity, we assume (i, j) to be the same as (,;). Next, an
S X § contrast sensitivity function (CSF) filter Fcgr is centered at
M(i, j). This linear filter is used to account for part of the human
visual system spatial response. The term CSF refers to both the
luminance [13, 14] and chrominance [15] models throughout this
paper.

The parameter S is an odd integer that varies with image res-
olution; and its choice will be discussed later. The weighted av-
erage oM at M(i, j) within the CSF filter window is computed
as

> M, j)Fesr(i, ), @)

where (i, j) € S x S window centered at (i, j). This process is

repeated for every {(i, ) : E(i, /) = k}. The statistical mean oM
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for the entire k™" cluster is given by

1 Y

M M
= o 2% 3)
N 2:1 i

ol =

where Ny is the total number of pixels for which E(i, j) = k.

The value Oc}(w is converted to CIE L*a*b* tristimulus coor-

dinates and recorded. The same process is repeated for the cur-
rent image C. Let g(e) be the transformation from sRGB color
space to the CIE L*a*b* color space. Then, the color difference

{AE - }gSF between Ot,?/[ and OCkC can be calculated as

(AE, )6 = ngkM)—g(aC) @

2

This color difference is computed for every cluster in E and the
value is recorded. The weighted color difference {AE -4 Y5 for
the master-current pair using the CSF filter is defined as

1
(BB = e ENAAEey 1 )
ok

Here the sum is taken over all the clusters in the image; and the
parameter N, is the total number of pixels in error.

Using Eqgs. 2, 3, 4, and 5, we filter the master and current im-
age around the pixels in error, compute the average filtered values,
and calculate AE,«,- only once per cluster to reduce the amount of
computation. Since OCIM and Oc]C are only calculated for the pixels
in error, the resulting {AE -« }CSF will be higher than that yielded
by a conventional approach where we filter the entire image pair,
find the average pixels values for the pixels in error and compute
the AE,-p«. For purposes of illustration, consider an isolated pixel
in error at (i, j) and a neighborhood A(i, j) of (i, j), to which the
error at (i, j) has spread through the filtering process. The color
differences of the pixels in the neighborhood are bounded by

‘g<(M*FCSF)(i/7j/)) -8 ((G*FCSF)(ilvj/)>’ < ot
V(i J') € AL J). ©)

Here, the symbol * denotes a 2D convolution. The right side of
Eq. 6 forms an upper bound for the average color difference in
A(i, j). If there are two or more pixels in error in the same neigh-
borhood, the superposition principle can be applied to arrive at
the same conclusion. In fact, the average AE« over A(i, j) can
be at most as large as {AE,-j- }<57 when the CSF in Eq. 2 is re-
placed with an unweighted S x S filter. So, {AE,; }5F in Eq. 5
is indeed an upper bound of the AE,++ if the AE -+ is calculated
after the entire image pairs are filtered with the CSF filter.

These computations are repeated with the visual acuity filter
(VAF), a second but a smaller linear filter which will pick up finer
details. The choice of the VAF will be described in detail later.
When the VAF is placed over M and C, the errors are taken into
account only if the entire region within the VAF window of either
M or C is completely black or white because these errors are more
noticeable. Similar to the case of the CSF, the error {AE - }VAF
picked up by the VAF is given by

1

tot

{AE, ., VAP = N N {AE e A @)
k
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The quantities {AEg }°5F and the {AE,j-}VAF are measures
designed to capture objectionable errors at two different scales.
These measures are combined using a variable power Minkowski
metric as follows

1
N, N, | Ny
{AE, . }CSFHVAT H{AEQ*;]*}VAF] "+ [{AE 1] } ®)

where
N, = 1 +2tanh (max({AEa*b* WAE (AEq .,y )) .9

Since {AEg - }YAF >0, {AE, - }F >0, and 1 <N, < 3, the
{AE,» VAT and the {AE -, Y“5F combine additively when both
of them are small. If one of them is much greater than the other,
the greater measure will dominate the overall metric. This combi-
nation was inspired by Keelan’s work in predicting overall image
quality from individual attributes [3].

The overall error metric € that measures the fidelity of the
current image with respect to the master image is obtained by ad-

justing AE{fgff +VAF according to the ratio of the number of pixels
Nior in error to the total number of pixels N in E:
csF+var| N
e = |[{AEes) ] (10)
N,

where Ny = 1+ =2, As the size of the region in error grows, &
also increases.

Indexed color images

Indexed color images have three channels and each chan-
nel is bilevel. So, halftone images also belong to this category.
The error metric € for this class of images is a straightforward
extension from that for the bilevel images. Each of the three
channels (Mg, Mg, and Mp) of the master image is first fil-

tered independently using the CSF filter by applying Eq. 2. Let

M _ [,M M M 1T e
o = [of,, ady, oph]” beavector containing the filtered

outputs of the red (R), green (G), and blue (B) channels, respec-
tively, of the pixel in the master image corresponding to the I

pixel of the k" cluster in the error map. By applying Eq. 3 to  the

R, G, and B channels independently, the mean color vector OtkM

for the k™" cluster in the master image can be obtained

S —

M _ M M M
O = % %G %] (11)

The computations are repeated with the current image to produce

the vector ot,(g. The error {AE:p }fSF between the master and

current images is simply the Euclidean norm in the CIE L*a*b*
space

(AE 5 )55 = ngz‘)—g(a,?) 7 (12)

2

computed according to Eq. 5. The error picked up by the visual
acuity filter is obtained in a similar way. In this case, the errors
are taken into account only if the entire region within the VAF
window of either M or C is completely colored for any of the
three channels or white. In other words, the VAF only picks up
the error under two different circumstances. First, the error will
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be picked up if there are no white pixels within the VAF window
of the master or the current images. Second, if the pixels within
the VAF window of either M or C are completely white, the error
will also be taken into account. Otherwise, the error will not be
considered as sufficiently strong and will be ignored. The € are
calculated using Egs. 8 and 10.

Grayscale images

Unlike bilevel images, grayscale images have 254 interme-
diate gray levels between white and black. In a given cluster,
the magnitude of the perceived error at the I pixel location
‘ g(a}(\l’l) — g(oc,g) may vary significantly. If the number of pix-
els with very large errors is much smaller than those with smaller
errors in the same cluster, these very large and localized errors
will be attenuated by the averaging effect when Eq. 3 is applied.
To reduce this effect, for each pixel in error in each cluster, we
first compute the AE,;+ between M and C. Pixels with AE
greater than a threshold 7 are averaged separately from those be-
low the threshold. This threshold is chosen to be T, = TM? where
T is the threshold mentioned earlier in the Error Metric section
and M? is the total area of the VAF in pixel units. A pixel with
error less than 7 units of AE will be ignored. The threshold 7
incorporates the spatial summation effect of HVS [16]. The HVS
accumulates quanta of light over a certain area. This area is often
referred to as the critical area. According to Ricco’s Law, within
this critical area, the product of the stimulus area and the accumu-
lated luminous energy must be at least as large as the threshold
for the detection of the stimulus [16]. A single pixel with error
as large as T, units of AE has the same effect as an area of the
error in M x M pixels with T units of AE. Individual pixels with
error between T and 7. units of AE are less significant in terms
of visibility, and are thus separated from those with error larger
than T, units of AE. For the Kh cluster, the total number of pixels
{Ng} with error larger than T, units of AE, and the total number
of pixels {Ny }; with error below the threshold are recorded. It is
important to note that Nyo; = N, + Np, where N; = ¥ {N, } and
Np = Y4 {ANp }&-

The overall AE+«;+ above and below the threshold for all the
clusters {AE - }SSF and {AE - }gSF are given, respectively, by

1
BEH ST = - SN (8B ST} a3
a k
1
{AE:p )55 = N—hZ{Nb}k{{AEW Rl
k

Similar to Eq. 8, {AE, }“5F is obtained by combining
{AE, ;157 and {AE,p- }55T as follows

N(;SF p
{AE ) H{AEa*bw}SSF] " [{AEy 15

where NgSF = 1+42tanh max( {AE p }gSF JAAE s }55F>> .

This process is repeated for the VAF. In this case, the errors
are taken into account only if the color of the entire region in
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CSF —CSF
N } NG5

either M or C under VAF is uniform. The error {AE, h*}VAF is
given by

N‘)/AF Nl}’AF
{AE VAT H{AEa*b*}ZAF] "t [{aE AT }

where N[‘,/AF = 1+42tanh max<{AEa*h*}ZAF,{AEa*h*}XAF)>.

}CSF+VAF

The combined error {AE - and the error metric € are

computed using Egs. 8 and 10.

Full color images

The error metric for full color images is simply an extension
from that for the grayscale images. The color difference formulas
are modified in exactly the same way as we did when extending
the metric model from bilevel images to indexed color images.
The AE,+, between M and C is calculated as in the grayscale
case. Pixels with AE .+ greater than a threshold 7. are averaged
separately from those below the threshold. The three channels
are filtered independently using the CSF and VAF windows. The
{AE -, VAT and {AE,; Y5F errors are obtained using Eqs. 11,
12, and then 5 with the CSF and VAF filters, respectively. The re-
maining computations are exactly the same as those for grayscale
images. It is interesting to note that the same error in a black and
white content region for all these image types will produce the
same value of € as that of a bilevel image pair.

Experiment

The prescreening tool was implemented in C language. The
image set used in the experiment were made up of bilevel,
grayscale, indexed color and full color images. This image set
consists of 147 image pairs. The image pairs are letter-size im-
ages with one of the 3 resolutions: 300 dpi, 600 dpi, or 1200
dpi. The images contain a wide variety of content such as text,
synthetic graphics, natural scenes, people, and color ramps. The
types of errors between the master and the current image are also
very diverse. Spatial shifts of portions of content, hue shift, in-
correct fonts, sizes and cases, missing or extra content, different
halftone screens, different shade, incorrect content such as wrong
words or characters are among the examples.

For a 600 dpi image, the highest spatial frequency at a view-
ing distance of one foot is approximately 63 cycles per degree.
The contrast sensitivity function (CSF) envelope (approximated
using a circularly symmetric envelope) is truncated below this cut-
off frequency and sampled in the spatial frequency domain at N
equally spaced points. An N-point inverse discrete Fourier trans-
form (IDFT) is taken to obtain the corresponding spatial domain
CSF filter. We found that N = 23 yields a good CSF spatial win-
dow with reasonably small filter coefficients near the boundary.
The visual acuity filter is added to pick up errors for the details at

, the normal visual acuity limit (approximately 1 minute of arc). To
speed up the computation, the CSF spatial filter and visual acuity

(13) filter (VAF) for 600 dpi images were approximated with simple

averaging windows of size 23 x 23 and 5 x 5, respectively. The
sizes of the windows were scaled accordingly for 300 dpi and
1200 dpi images. At a viewing distance of 12 inches, a pixel of
a 600 dpi image subtends slightly less than 0.5 minutes of arc.
At this acuity limit, an observer is unable to resolve two to three

1
NyAF

16)
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pixels that are next to one another. Hence, a 5 x 5 window with
the pixel in error at the center is a reasonable choice for VAF. We
have also conducted a separate test to see whether or not the VAF
window could be excluded. The tool fails to pick up small (in
terms of size) but visually significant errors as expected. This test
justifies the need for the VAF in our error metric model.

These image pairs were screened by 6 expert observers and
classified into 3 categories: passed (acceptable), further evalua-
tion (require further evaluation) and failed (objectionable). These
image pairs are then screened using the prescreening tools with
configuration page identification, and time stamp detection op-
tions turned on. The PSNR and the MSSIM metrics for the image
set is also computed for comparison. To compute the MSSIM
value for a current-master image pair, we applied the MSSIM al-
gorithm to the grayscale version of the image pair since this algo-
rithm [11] considers only information in the luminance channel.
This algorithm is implemented as described in Wang et al’s work
[11].

Results

The error metric value € predicted by the prescreening tool
for each master-current image pair is plotted in Fig. 1. One of
the image pairs with very severe error (approximately 470) is not
shown in the figure since it is the only one with € greater than
200. The slice of Fig. 1 with & between 0 and 10 is plotted in
Fig. 2 to show the results in the lower range more clearly. The
PSNR metric values for the same image set are shown in Fig. 3.

200
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160} + Further eval
A Faied f
L 140
Tioof 151%>75 A gy
E Possible thresholds j
5 A
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S 80 [ X l | A;é A
¥ A
60 A A AAA% A
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40
* % AR,
20 :* A A %AA A
*
v R Y Y S R

20 40 60 80 100 120 140
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Figure 1. The error ¢ for the 147 test image pairs in 0-200 range. The € of
one image pair that exceeds 200 is not shown in the figure.
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Figure 2. The error ¢ for the 147 test image pairs in 0-10 range.
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Figure 3. PSNR values for the 147 test image pairs in 0-70 range. The
PSNR values of three image pairs that exceed 70 are not shown in the figure.

The MSSIM values for the same image set are shown in
Figs. 4 and 5.
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Figure 4. MSSIM values for the 147 test image pairs. A perfect match
yields a value of one.
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Figure 5. MSSIM values for the 147 test image pairs in 0.99-1.00 range. A
perfect match yields a value of one.

Discussion

The results in Fig. 1 and 2 indicate that the prescreening tool
is capable of screening out as many as 35% of the acceptable and
objectionable differences for this image set when the lower and
upper thresholds of € are set to 4.5 and 75 respectively. For the
image pairs below the lower threshold and above the upper thresh-
old, the tool produces the same decisions as those of the expert
observers. As many as 20% of the image pairs with acceptable
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differences can be screened out so that the observers will never
have to inspect these image pairs at all. Knowing that approxi-
mately 15% of the image pairs have very objectionable errors, the
observers will not need to screen these image pairs manually at
all. So, the observers only need to concentrate on the remaining
65% of the image pairs to determine if the errors are acceptable or
not. When more conservative thresholds (1 for the lower thresh-
old and 100 for the upper threshold) are used for €, the tool is still
able to screen out approximately 19% of the image pairs.

On the other hand, the results for the PSNR metric indicate
that this metric is only able to screen out 4%. These are the image
pairs with acceptable differences. No reasonable threshold exists
for the objectionable case. The results of MSSIM exhibit a trend
similar to that of the PSNR. MSSIM values range from zero to
one. A perfect match between the current and the master images
yields a unity MSSIM. The MSSIM metric only screens out 3.4%
of the images. These are the failed image pairs. The PSNR and
the MSSIM metrics are obviously not a good error metric for this
application.

Conclusion

We have developed an automated prescreening tool, along
with an image fidelity metric for a printer qualification process.
This tool works for a wide range of image types and content. It is
able to reduce the workload of expert observers by a substantial
amount.

Acknowledgments

The authors would like to thank Hewlett Packard Company
for supporting this research. This work was completed when Du-
Yong Ng was a student at Purdue University.

References

[1] W. Jang and J. P. Allebach, “Simulation of Print Quality Defects,”
Journal of Imaging Science and Technology, 49, pp. 1-18, Jan./Feb.
2005.

[2] P. G. Engeldrum, “Image quality modeling: where are we?,” in
Proceedings of the 1S&T’s PICS Conference, Savannah, Georgia,
pp. 251-255, April 1999.

[3]1 B. W. Keelan, Handbook of image quality characterization and pre-
diction. Marcel Dekker, Inc, New York, NY, pp. 149-168, 2002.

[4] Z. Wang, A. C. Bovik and L. Lu, “Why is image quality assessment
so difficult?,” in Proceedings (ICASSP ’02) IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, pp. 3313-3316,
May 13-17, 2002.

[5] J. B. Martens, “Multidimensional modeling of image quality,” Pro-
ceedings of the IEEE, 90, pp. 133-153, 2002.

[6] D. A. Silverstein and J. E. Farrell, “The relationship between image
fidelity and image quality,” in Proceedings IEEE International Con-
ference on Image Processing, Lausanne, Switzerland, 1, pp. 881-884,
Sept. 16-19, 1996.

[7] J. A. Garcia, J. Fdez-Valdivia, R. Rodriquez-Sanchez, and X. R. Fdez-
Vidal, “Performance of the Kullback-Leibler information gain for
predicting image fidelity,” in IEEE Proceedings 16th International
Conference on Pattern Recognition, Quebec City, Que., Canada, 3,
pp. 843-848, Aug. 11-15, 2002.

[8] S. Daly, “The visible differences predictor: An algorithm for the
assessment of image fidelity,” in Digital Images and Human Vision,
A. B.Watson, Editor, pp. 179-205, MIT Press, Cambridge, MA, 1993.

596

[9] C.C. Taylor, “Image quality assessment based on human visual sys-
tem model,” Ph.D Dissertation, School of Electrical Engineering,
Purdue University, West Lafayette, IN, 1998.

[10] W. Wu, “Two problems in digital color imaging: Colorimetry and
image fidelity assessor,” Ph.D Dissertation, School of Electrical En-
gineering, Purdue University, West Lafayette, IN, 2000.

[11] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P Simoncelli, “Image
Quality Assessment: From Error Visibility to Structural Similarity,”
IEEE Transaction on Image Processing, 13, pp. 600-612, April, 2004.

[12] R. G. Kuehni and R. T. Marcus, “An experiment in visual scaling of
small color differences,” Color Research and Application, 4, pp. 83-
91, 1979.

[13] C. W. Thomas, G. C. Gilmore, and F. L. Royer, “Models of contrast
sensitivity in human vision,” in /EEE Transaction on Systems, Man,
and Cybernetics, 23, pp. 857-864, May/June, 1993.

[14] S. H. Kim and J. P. Allebach, “Impact of HVS models on model-
based halftoning,” [EEE Transaction on Image Processing, 11,
pp. 258-269, March, 2002.

[15] T. J. Flohr, B. W. Kolpatnik, R. Balasubramanian, D. A. Carrara,
C. A. Bouman, and J. P. Allebach, “Model-based color image quanti-
zation,” in Proc. SPIE Human Vision, Visual Processing, and Digital
Display 1V, San Jose, CA, 1913, pp. 270-281, Jan. 31-Feb. 4, 1993.

[16] S. H. Schwartz, Visual Perception: A Clinical Orientation, pp. 44-
47, The McGraw-Hill Companies, Inc, 3rd Edition , NJ, 2004.

Author Biography

Du-Yong Ng received his BSEE, MSEE and Ph.D from Purdue Uni-
versity in 1998, 2001 and 2004 respectively. He has been with Lexmark
International Inc. since 2004. His research interests include colorimetry,
electronic imaging systems, multi-spectral imaging systems and applica-
tions, image quality and analysis and color image processing.

Jan P. Allebach received his BSEE from the University of Delaware
in 1972 and his Ph.D. from Princeton University in 1976. He was on
the faculty at the University of Delaware from 1976 to 1983. Since 1983,
he has been at Purdue University where he is Hewlett-Packard Professor
of Electrical and Computer Engineering. His current research interests
include image rendering, image quality, color imaging and color mea-
surement, and digital publishing. Prof. Allebach is a member of the IEEE
Signal Processing (SP) Society, the Society for Imaging Science and Tech-
nology (IS&T), and SPIE. He has been especially active with the IEEE SP
Society and IS&T. He has served as Distinguished/Visiting Lecturer for
both societies, and has served as an officer and on the Board of Directors
of both societies. Prof. Allebach is a past Associate Editor for the IEEE
Transactions on Signal Processing and the IEEE Transactions on Image
Processing. He is presently Editor for the IS&T/SPIE Journal of Elec-
tronic Imaging. He received the Senior (best paper) Award from the IEEE
Signal Processing Society and the Bowman Award from IS&T. In 2007, he
was named Honorary Member of IS&T - the highest award bestowed by
IS&T. He is a Fellow of IEEE, IS&T and SPIE.

Society for Imaging Science and Technology



	155
	46
	219
	245
	18
	119
	57
	137
	100
	103
	63
	104
	101
	165
	116
	69
	127
	159
	199
	130
	86
	140
	150
	151
	226
	246
	223
	167
	222
	175
	185
	186
	85
	71
	109
	75
	58
	93
	61
	99
	124
	205
	98
	247
	200
	237
	134
	162
	80
	201
	102
	89
	178
	147
	146
	215
	111
	183
	115
	154
	74
	113
	114
	177
	253
	11
	33
	22
	24
	38
	40
	8
	9
	19
	14
	15
	92
	195
	156
	67
	70
	181
	221
	68
	94
	231
	83
	95
	96
	53
	133
	112
	225
	148
	62
	168
	230
	170
	66
	189
	232
	172
	214
	257
	54
	169
	174
	160
	126
	55
	52
	143
	84
	157
	120
	184
	163
	117
	78
	135
	136
	192
	252
	3
	28
	23
	20
	34
	43
	27
	47
	48
	64
	121
	76
	141
	216
	224
	211
	188
	190
	202
	82
	118
	244
	212
	105
	227
	196
	97
	243
	158
	65
	123
	206
	166
	138
	125
	152
	72
	209
	51
	110
	161
	204
	194
	233
	144
	128
	228
	234
	235
	255
	250
	249
	42
	17
	7
	39
	44
	16
	2
	21
	254
	25
	12
	37
	31
	50
	73
	106
	198
	229
	164
	56
	142
	176
	87
	187
	179
	180
	90
	81
	197
	239
	182
	242
	193
	203
	60
	122
	59
	88
	79
	107
	207
	149
	139
	171
	210
	236
	258
	240
	256
	241
	36
	30
	26
	10
	29
	32
	5
	6
	35
	4
	41
	45
	49



