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Abstract 
A latex when subjected to shear can exhibit Newtonian or a 

non-Newtonian flow and a yield stress depending on inter-particle 
forces. Under dynamic deformation, elastic modulus shows a 
plateau as the shearing frequency is decreased.  Acrylic latex was 
made under varying processing conditions, which resulted in 
differences in yield stress, elastic modulus and non-Newtonian 
behavior. Coalescence and fusion results from interplay of inter 
particle forces (van der Waals, electrostatic and stearic forces) 
which are opposedby mechanical forces (hydrodynamic and 
Brownian) forces. Static and high frequency shear modulus are 
particle and concentration dependent. Experiments on latex 
colloids under dynamic oscillation are found to be consistent with 
the models. 

Introduction 
A chemical toner is prepared by a process of sequential steps 

of making a latex emulsion from resin, water and ionic surfactant. 
The latex is blended with dispersion of a colorant, coagulated and 
then heated to coalesce particles and accelerate their fusion to form 
toner by lowering pH.[1]. The toner is made from a latex which 
has a static yield stress and has viscosity which decreases with 
increase in shear rate as a power law [2].  In the past, a number of 
studies have been engaged elucidating the nature of the forces 
which could promote the deformation of the particles, and their 
evaluation leading to many mechanisms and theoretical models: 
dry sintering under the influence of polymer-air surface tension, 
wet sintering under the influence of polymer-water interfacial 
tension, sintering under the action of capillary forces originating 
from the water-air interfacial tension, theory of mechanical 
compression under the influence of osmotic pressure. Forces 
promoting coalescence are capillary force and London-van der 
Waals, forces.  Force opposing the deformation of the particles to 
be taken into account is their mechanical resistance. The polymers 
constituting the particles are considered be incompressible and 
viscoelastic in nature. Considering the deformation undergone by 
the particles is sufficiently small, their mechanical behavior can be 
described by the theory of linear viscoelasticity. 

  
Latex stability is dependent on inter particle surface forces 

and interplay of external forces. In the absence of external forces 
such as Brownian and hydrodynamic, colloidal stability in a latex 
is governed by electrostatic double layer repulsion or/and steric 
repulsion compensation van der Waals force of attraction between 
particles. Thickness of the double layer repulsion in electrostatic 
stabilization increases with decrease in electrolyte concentration 
and increase in zeta potential. Under Brownian forces, rate of fast 
flocculation in electrostatic stabilization increases with the 
decrease in viscosity, increase in particle size, increase in shear 

rate. In steric stabilization, grafting or adsorption of a polymer on 
the particle surface, thickness of the polymer layer and the 
solubility of the polymer are key controlling factors. When volume 
fraction of the solid is large, adsorbed polymer thickness is small 
(low molecular weight) or when concentration of non-adsorbing 
polymer is large, weak flocculation can occur while strong 
flocculation can occur when solvency of the medium for polymer 
is poor.  

 
Calculating the non-equilibrium properties of colloidal 

suspensions is a highly nontrivial exercise because these depend 
both on the short-time thermal Brownian motion and the long-time 
hydrodynamic behavior of the solvent the effects of the solvent 
can be taken into account through Brownian dynamics (BD),which 
assumes that collisions with the solvent molecules induce a 
random displacement of the colloidal particle positions, as well as 
a local friction proportional to their velocity. Additionally, 
momentum transport through the solvent—as described by the 
Navier-Stokes equations—which leads to long-range 
hydrodynamic interactions (HI’s) between the suspended particles. 
Lattice- Boltzmann technique is used to solve Navier- Stokes 
equation for colloidal dynamics[3].   Using Molecular Dynamics 
electrostatic interaction between two of these particles can be 
described by an exponentially screened Coulomb potential[4],  

 

 
                                                              (1) 

 
where d denotes the particle diameter and r is the distance 

between the particle centers. ε is the elementary charge, T the 
temperature, k is the Boltzmann constant, and z is the valency of 
the ions of added salt.    The effective surface potential ζ  is the 
electrostatic potential at the border between the diffuse layer and 
the compact layer, it may therefore be identified with the ζ -

potential 0ε  is the permittivity of the vacuum, rε  is the relative 
dielectric constant of the solvent., κ is the inverse Debye length  

defined by with the ionic strength I and the Bjerrum 
length Bl . 

                                                                                                    
The Coulomb term of the DLVO potential competes with the 
attractive van der Waals term 
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On shorter distances, a lubrication force has to be introduced 
explicitly in the molecular dynamics simulation. The most 
dominant mode, the so-called squeezing mode, is an additional 
force. 

                                                (3) 
 

                                          (4) 
 
between two spheres with radii 1r , 2r  and the relative 

velocity relν  ,η  is the dynamic viscosity of the fluid. 
 
To avoid that the particles penetrate each other, one needs a 

repulsive force depending on their overlap. We are using a Hertz 
force described by the potential 

 

                           (5) 
 
where K is expressed by the elastic modulus 
 
Computer simulation methods are used for many-particle 

systems, for the inclusion of inertia effects (Reynolds numbers > 
1) and Brownian motion (Peclet number of order 1). Two parts of 
the simulation, Molecular Dynamics, MD and Stochastic Rotation 
Dynamics method (SRD) are coupled, the simulations on the 
colloidal particles are used compute viscosity shear rate 
dependence.[4]  

In another model, the equations of motion for N such particles 
immersed in a Newtonian fluid with viscosity thus express a 
quasistatic force balance [5]. 

                                 (6) 
 
The 6N force/torque vectors are: 1) hydrodynamic forces 

HF , exerted on the particles due to their relative motions in the 
presence of the solvent, 2) colloidal forces PF , the sum of 
repulsive and attractive terms!, and 3) Brownian forces BF . 

HF  is dominated by lubrication hydrodynamic terms between 
the close approaching surfaces of the colloidal particles. The 
colloid force term, FP, contains both attractive—hence the 
term‘‘aggregated’’ colloids—and repulsive terms. The attractive 
force is identified as depletion force and has been modeled using 
Asakura–Oosawa potential; a short range repulsive force f rep is 
also included at the surface of the spheres. This takes on the form 

of a Hookean spring force mimicking the osmotic part of an 
attached/adsorbed polymer layer. 

 
The microscopic viscous and elastic moduli have been 

determined from the mean-squared displacement by assuming t the 
Stokes-Einstein relation that is valid for Newtonian fluids can be 
generalized to viscoelastic fluids with frequency-dependent linear 
viscoelastic moduli and considering inertial effects on the motion 
of the probe particles to be negligible [6]. 

 
Magnitude of the shear modulus is calculated as 
 

                                                                 (7) 
 

Where Bk is the Boltzman constant, T is the temperature, a is 

the particle radius and τ the gamma function. The viscous 

modulus is given by  
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and the elastic modulus is  
 

                                                   (9) 
 
Shear stress shear rate dependence of colloids with yield 

stress is found to follow Herschel – Bulkley constitutive relation. 
 

                                   (10) 
 
where yσ  is the yield stress. K is the consistency and n is a 

power law index. 

Methods and Materials 
Latexes were prepared according to the methods described in 

references [1,2]. Steady shear viscosity as function of shear rate 
was calculated using Rheomterics Fluid Spectrometer in a Couette 
flow. Shear stress shear rate plots were fitted into Herschel-
Bulkley constitutive equation and yield stress and power law 
indices were obtained. Using oscillatory sinusoidal deformation, 
torque was resolved into real and imaginary components. Elastic 
and viscous modulus was calculated as function of shearing 
frequency. Relaxation modulus as function of time was obtained 
by using transformation functions and numerical approximations. 
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Results and Discussion 
Viscosity of eight latexes show that there is a shear rate 

dependence as result of Brownian and hydrodynamic forces on 
shearing colloidal particles subject to inter-particle forces, 
electrostatic, van der Waal and steric forces. As the shear rate is 
increased, colloidal particles aggregate and break-down.  As given 
in Figure 1, higher shear rates result in diminishing differences 
between latexes. 

Figure 1 Viscosity shear rate dependence of latex L1 to  
L8 is shown 
 

On taking viscosity at shear rate of 1sec-1 and 100sec-1 and 
plotting them against particle size, there is a good correlation 
between viscosity and particle size at shear rate of 1sec-1 but no 
such dependence exist at 100sec-1. 
 
 

 
 
 
 

 
           
 
 
 
 
 

 
Figure 2 shows the dependence of viscosity on particle size at 
shear rates of 1sec-1 and 100sec-1 
 

In Brownian Aggregation and shear induced aggregation, the 
particle aggregation rate with increasing shear rate, decreasing 
viscosity and increasing particle concentration. 

 
Yield stress computed using Herschel-Bulkley constitutive 

equation is determined for all eight latexes and is plotted against 
particle size. The equation showing dependence of yield stress on 

particle size is given by PS
Y e 0393.0142563 −=σ 2R  = 0.9286 

where PS is the particle size and yσ  is the yield stress 

 
 

 

 

 

 

 

 

 

Figure 3 shows dependence of yield stress on particle 
size of latex 

 
Nonlinear rheology in colloidal systems is a consequence of 

external deformation that reduces barriers, accelerate relaxation 
and flow, and ultimately drive yielding. Increasing stress modifies 
the nonequilibrium free energy resulting in a reduction of the 
degree of transient localization, softening of the elastic shear 
modulus, a reduction of the entropic barrier, and viscosity 
thinning. At a critical value of strain or stress, the system is 
predicted to undergo an absolute yield transition, i.e, the solidlike 
mechanical response is lost since particles are no longer transiently 
trapped by the surrounding cage. 
 

Relaxation modulus of the latexes was obtained from 
dynamic modulus as function of time. Depending on the particle 
size, differences in relaxation modulus. In general higher particle 
size leads to a lower relaxation modulus. The latex L5 and L7 have 
the same particle size but L5 has higher relaxation modulus.  
Dependence of relaxation modulus on time shows an exponential 
dependence. 
 

 

 

 

 
 

  

 

 
 
Figure 4 gives dependence of relaxation modulus on 
time for latexes of different particle nanometer size 
 
 

The force required to push together two viscoelastic balls is 
given by [8] 
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The model suggests that combination (fusion) of two 
viscoelastic particles depend on radius of the particle, R and 
relaxation modulus G(t). 

Conclusion 
Models on soft matter like colloidal dispersions of latex were 

analyzed.  Effect of Brownian and hydrodynamic forces result in 
concentrated.  Emulsion Aggregation dispersions being shear 
thinning, exhibiting yield stress and giving relaxation modulus that 
are particle size dependent.    
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