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Abstract 
Two alternative curing mechanisms may be used; free radical 

polymerization and cationic polymerization.  Free radical 
polymerization currently dominates because of its low cost and the 
ease of design afforded by a wide selection of usable monomers.  
Cationic polymerization is a new process but has become to get 
many attracts because of its unique advantages.  One of the 
challenges of the cationic polymerization is the tendency to be 
affected by moisture.  Studying about the polymerization under 
several moisture levels, we found the reactivity of monomers 
controlled the effect of moisture.  We will report results of 
mechanistic study of the effect as well as ink performances at high 
humidity environment. 

Introduction  
UV curable inkjet systems have proliferated because they can 

be used with non-absorbing media and because they fix quickly.  
Two alternative curing mechanisms may be used, free radical 
polymerization or cationic polymerization.  Free radical 
polymerization currently dominates because of its low cost and the 
ease of design afforded by a wide selection of usable monomers.   

However, free radical polymerization has an inherent 
disadvantage: oxygen inhibits their polymerization.  Inkjet inks 
have lower viscosity than conventional off-set inks, and 
atmospheric oxygen can diffuse into inks with lower viscosity.  
Consequently, inhibition takes place more easily in inkjet inks than 
in off-set inks.[1] 

Cationic polymerization, the alternative curing mechanism,[2] 
avoids these difficulties by adopting a different polymerization 
mechanism that is free of oxygen inhibition.  Key component for 
the polymerization is photo-generated acid.  The acid protonates 
cyclic ether oxygen.  It can be cleaved to carbonium cation (a).  
Unprotonated cyclic ether reacts with the cation to form alkyl 
oxonium cation (b).  The oxonium cation can also be formed by 
the reaction of the cation (a) with unprotonated ether in SN2 type 
reaction.  The cation (b) reacts with the ether sequentially to form 
polyethers. 

One of the issues of the cationic polymerization is the 
tendency to be affected by moisture.  It was said that water 
molecule can react with the cation intermediate to terminate the 
polymerization because of its higher reactivity.[3] 

In this paper, we present our results with a focus on effects of 
water on curing performance as well as mechanistic study. 

 
 

 
 
 
 

 
 
 
 
 
 

 

 

 

 

Figure 1  Cationic polymerization mechanism 

Experimental 
Epoxide (2) was synthesized by a conventional method.[4] 

Other monomers and photo-initiator used in this study are 
commercially available.  Monomers and the photo-initiator were 
mixed with under yellow light and used for the study. Curing 
speeds were measured with FT-IR spectrophotometer.   

Results and Discussions 

Effect of water on ring-opening reaction of 
epoxides 

The effect of water on ring-opening reaction of epoxides was 
evaluated by using real time FT-IR spectroscopy at high and low 
humidity environments. 

We mixed epoxide monomers, (1), (2), and (3) with photo-
initiator (4) separately.  The mixtures were irradiated with high 
pressure mercury lamp and a decay of peak intensity at 775 cm-1, 
which was assigned to the absorption of epoxide ring, was 
monitored to evaluate the reaction rate.  The measurements were 
carried out at 20%RH and 80%RH environments and the results 
were summarized in figure 2. 

The curves showed the rate of ring-opening reaction of 
epoxide.  Epoxide (1) and (2) showed higher rates while epoxide 
(3) showed slower rate at 20%RH.  At high humidity environment, 
80%RH, all the ring-opening rates were retarded greatly.  In 
particular, epoxides (2) and (3) showed a big retardation. 
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Figure 2.  Ring-opening reaction of epoxides at 20%RH (solid lines) and 
80%RH (dashed lines) 

Effect of water on curing behavior of oxetane-
epoxide mixtures 

It was reported that mixture of oxetane and epoxide showed 
good curing behavior for practical use of cationic polymerization 
as UV curable ink.[2]  Although the epoxide used in the literature 
showed higher reaction rate alone at initial stage of polymerization, 
its conversion ratio stayed low.  Although the oxetane used 

showed higher conversion ratio alone, its reaction rate was low at 
the initial stage.  It was found the mixture of the epoxide and the 
oxetane showed a synergistic effect on curing behavior; the 
epoxide gave higher reaction rate and oxetane gave higher 
conversion rate.   

To evaluate the effect of water on practical usage, we then 
measured the effect of water on curing sensitivity with coatings of 
the mixture of oxetane (5) and above mentioned epoxides.  We 
mixed the oxetane with epoxides and the photo-initiator to form 
model inks.  The ratio was 67/28/5 in weight.  The mixtures were 
coated on PET with wire bar, and the thickness of the coating was 
adjusted to be 3 μm.  Then they were irradiated with high pressure 
mercury lamp at 3 humidity levels, 20%RH, 50%RH, and 80%RH.  
To compare the curing sensitivity at every humidity level, we 
measured irradiated energy that was necessary to become durable 
against scratch.  The results were summarized in figure 3. 

In figure 3, we observed similar effect of water to that of on 
ring-opening reaction.  Efficiency of polymerization was 
decreased as humidity level was increased.  Much energy was 
necessary at higher humidity levels.  Combining with the result in 
figure 2, it seemed that the ring-opening reaction rate affected the 
curing sensitivity.  Epoxide (1), which showed the highest rates at 
both high and low humidity alone, showed higher polymerization 
efficiency with the oxetane.  Epoxide (3), which showed the 
slowest rates, showed lower polymerization efficiency.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3  Humidity dependence of curing sensitivity. 

Reaction mechanism of cationic polymerization 
Although the carbonium cation derived from epoxide was 

reported to be a key intermediate and its formation step is rate-
determining of the polymerization, the effect of water did not 
reported.[2]  To clarify the effect, we studied the reaction 
mechanism of the polymerization of oxetane-epoxide system in the 
presence of water.   
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We evaluated tendency of protonation by photo-generated 
acid of the materials, oxetanes, water, and epoxides, by comparing 
their basicity, pKb values. 

The basicity of oxygen atoms of oxetane and epoxide were 
reported as shown below.  Oxetane-oxygen has the biggest pKb 
value; it means that oxetane has the highest basicity of the three.  
The photo-generated proton will be added on the oxetane-oxygen 
in higher ratio.  The oxonium cation derived from the oxetane, 
however, was reported to be much stable than the oxonium cation 
derived from epoxide; the polymerization will be promoted only 
from the epoxide-derived oxonium cation. 

 
 oxetane water epoxide 
pKb 3.1 7.0 7.4 
 
When the polymerization will be carried out at higher 

humidity environment, the ink can absorb certain amount of water.  
Water molecule is less basic than oxetane but much basic than 
epoxide.  Water molecule can trap the photo-generated proton and 
retard to form the epoxide-derived oxonium cation (B).  The 
concentration of the oxonium cation will be decreased, and the 
polymerization will be retarded accordingly.  The mechanism was 
proposed in figure 4. 

If the ring-opening reaction of the epoxide-derived oxonium 
cation (B) is fast, much amount of epoxide (A) will be protonated 
through the equilibrium EQ.  Consequently, efficiency of the 
polymerization with such epoxide will be improved as shown in 
figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Polymerization mechanism in the presence of water 

Conclusion 
We evaluated the effect of water on ring-opening reaction of 

epoxides by using real time FT-IR spectroscopy.  The ring-
opening reactions were retarded greatly at high humidity 
environment.  We also evaluated the effect of water on curing 
behavior of oxetane-epoxide mixture system.  The curing 
sensitivity was also affected by moisture and much amount of 
energy was necessary at high humidity environment to be cured. 

Comparing pKb values of materials, epoxide was found to be 
less basic than oxetane and water.  The generation of the key 
intermediate, oxonium cation (B), will be affected by water 
accordingly.  The concentration of the cation will be decreased by 
water and the polymerization will be retarded accordingly. 

From the mechanism, it was considered that accelerating of 
the ring-opening reaction will suppress the effect of water on the 
curing.  Epoxides with higher ring-opening rate showed good 
curing behavior even at high humidity environment. 
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