
 

The Influence of Image Content and Paper Grade on Quality 
Attributes Computed from Printed Natural Images 
Raisa Halonen 1, Tuomas Leisti 2 and Pirkko Oittinen 1 
1Dept. of Media Technology, Helsinki Univ. of Technology, Espoo, Finland  2Dept. of Psychology, Univ. of Helsinki, Helsinki, Finland 

Abstract 
Computation of quality from digital photographic images has 

been widely studied whereas research on quality computation from 
printed natural images has been scarce to date. This study was 
motivated by needs to develop characterization of the quality 
potential of paper for digital printing by electrophotography and 
ink-jet employing subjectively meaningful objective methods. The 
goal was to find whether commonly used algorithms of blur, noise, 
contrast and colorfulness are feasible for quality characterization 
within the range of variation originating from paper and to 
evaluate whether the performance of paper grades is dependent on 
image content type. According to the results, image content is 
highly important and the applicability of the algorithms is 
complicated by the role of noise in prints. 

Introduction 
The growth of on-demand and home printing has created new 

needs for paper producers to convey the quality potential of paper 
to end-users. In the past, paper was mainly purchased by 
professionals more concerned about technical issues than 
subjective quality preferences. The new situation requires that the 
quality potential is specified using metrics which are relevant to 
the end-user. 

This study is a part of a project [1] which aims to develop a 
quality model and quality index for the visual quality of digitally 
printed natural images (photographs) from the paper standpoint. 
The work has analogy with efforts which are ongoing in the printer 
systems [2] and mobile camera (I3A) [3] communities from the 
respective perspectives. 

The purpose of this study was to evaluate the feasibility of 
computing quality attributes from printed digitized images. So far 
flat test fields or sinusoidal patterns have been used for 
computation of quality. Flat fields or periodic patterns are not well 
suited to visual quality assessment and instead images of natural 
objects and scenes need to be used. As for influences on the 
syntactic level of image information, color, detail content and lack 

of artifacts such as noise on smooth image areas are known to be 
important. Images for quality evaluation are usually selected with 
these aspects in mind. 

The literature about quality metrics determined from digital 
natural images is abundant. This paper focuses on the feasibility of 
extending computational quality metrics to the print context. 

Methodology 

Material 
A series of samples was prepared to study the influence of 

image content and paper grade on the computed quality attributes 
as well as the subjective evaluations of the respective attributes. 
The test layout covering two A4 sheets included four natural 
images, three of which were used in this study (Fig. 1), as well as 
test fields. The image contents included typical content types such 
as objects with details (cactus), a human portrait (man) and a 
landscape (lake). 

Variation in paper properties was achieved by selecting 36 
different papers for the study. The selection consisted of 15 
electrophotographic (EPG, numbered 1-15), 6 multipurpose (MP, 
16-21) and 15 ink-jet (IJ, 22-36) papers. EPG papers and IJ papers 
were printed using their respective printing methods and MP 
papers with both methods. The variation in paper and print 
characteristics in the test series is presented in Table 1. 

 

     
Figure 1. The different contents of the natural images used in the study. 

Table 1. The variation in paper and print characteristics in the test series. 

Paper 
Grammage 

(g/m2) 
Whiteness 

(%) 
Brightness 

(%) 
Opacity 

(%) 
Fluorescence 

(%-units) 
Permeability 

Bendtsen (ml/min) 
EPG 91 – 274 107 – 161 90 – 101 92 – 100 24 – 73 0 – 213 
MP 77 – 84 79 – 157 89 – 100 86 – 94 0 – 68 392 – 706 
IJ 98 – 280 91 – 150 86 – 98 89 – 99 7 – 59 0 – 193 

Paper / Print 
Roughness 
PPS (μm) 

Roughness 
Bendtsen (ml/min) 

Paper Gloss 
(GU) 

Print Gloss 
(Black, GU) 

Print Density 
(Black, D) 

Color Gamut 
(a*b*) 

EPG 0.7 – 4.1 0 – 122 8.2 – 87 13– 53 1.55 – 1.80 7700 – 9000 

MP 
EPG 

4.5 – 7.2 91 – 247 4.0 – 7.4 
9.0 – 20 1.59 – 1.65 7500 – 8500 

IJ 0.6 – 0.9 1.09 – 1.18 5600 – 6300 
IJ 0.6 – 5.7 0 – 270 2.2 – 96 0.1 – 88 1.32 – 2.11 8700 - 13800 
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Each sample was printed and digitized according to a distinct 
process, for details see [1]. The electrophotographic samples were 
printed with Xerox DC6060 (CMYK) and the ink-jet samples with 
Epson Stylus Pro 3800 (CMY, light C, light M, light K, light light 
K and photo K or matte K). On both devices, optimal print settings 
were chosen for each paper by identifying the print media type. 
Printer-specific algorithms were used for halftoning. DC6060 
enabled also paper-specific calibrations, for which an X-Rite 
QuickCal densitometer was used. Paper-specific ICC profiles were 
determined for both devices in Profilemaker Pro 5.0.8. The 
profiling targets used were IT8.7-3 CMYK for DC6060 and 
TC9.18 RGB for Stylus Pro 3800. The targets were printed with 
i1_iO layout as the measurements were carried out with an Eye-
One Pro spectrophotometer attached to an Eye-One iO table. With 
DC6060, ten copies were made to control the print-to-print 
variation. The ninth was chosen for further study. With Stylus Pro 
3800, three copies were made and the one with the best overall 
quality was chosen. 

The printed samples were digitized at 150 dpi and 48 bits 
with an Epson Perfection V750 Pro scanner, using the professional 
mode of Epson Scan software. Paper-type-specific ICC profiles 
were used following a clustering based on their optical properties. 
Six profiles were used for the electrophotographic samples and 
seven for the ink-jet samples. Profilemaker 5.0.8 and Scan Target 
1.4 RGB were used for the profiling. The target for each paper 
type was printed on a chosen representative paper grade. 
Photoshop 7.0.1 or newer was used for printing, scanner profile 
assigning and CIELAB conversions. Fig. 2 presents magnified 
examples of typical digitized samples. 

 

 

 

 
Figure 2. Five-time magnifications of typical digitized images. Papers from 
left to right: 26 (IJ), 20 (MP, printed with IJ), 20 (printed with EPG) and 8 
(EPG). 

Computation of Quality Attributes 
The following algorithms were used in the study: Marziliano 

et al. [4] for blur, Immerkaer for noise [5], rms for contrast [6], 
and Hasler and Süsstrunk [7] for colorfulness. Blur, noise and 
contrast were computed from the L* channel of the CIELAB color 
space. Some observations of the special features of the print 
context were made during computation, especially concerning the 

blur and noise algorithms. These were related to the halftoning and 
paper structures. 

The blur algorithm of Marziliano et al. detects the edges in an 
image by filtering (e.g. a vertical Sobel filter) and applying a given 
threshold. Edge maps (Fig. 3) reveal how the choice of the edge 
threshold is critical. 

 

       
 

       
Figure 3. Edge maps of digitized cactus images produced in the process of 
Sobel filtering the image. Papers and thresholds from left to right: 26 (IJ) with 
threshold 0.06 ( L* channel scaled from 0 to 1 for computation), 26 with 
0.006, 20 (EPG) with 0.06 and 20 with 0.006. Below each cactus edge map 
is an edge map of a digitized 50% gray test field from the same sample. 

Although a threshold of 0.06 has been successfully used with 
digital images [8], in this context it did not distinguish all relevant 
edges in the image. With 0.06 the cactus edge maps of paper 26 
(IJ) and 20 (EPG) appeared rather similar and on neither paper the 
edge map of the 50% gray showed any edges. However, with 
0.006, the algorithm produced a reasonable cactus edge map on 26 
(IJ), but on 20 (EPG) it seemed to find nothing but noise as edges 
from both the cactus image and the 50% gray field. This problem 
has previously been pointed out i.e. in [9]. 

Noise maps are produced as the algorithm [5] filters off the 
real structure of the image. Reviewing the noise maps reflects the 
different types of noise produced by electrophotography and ink-
jet. Whereas the noise in the ink-jet samples was point-form, the 
noise in the electrophotographic samples appeared as banding. The 
algorithm also seemed to have difficulties in distinguishing the 
image structure from the noise; in most cases image structure was 
seen in the noise maps. 

Subjective Tests 
The sharpness, graininess, colorfulness and contrast of the 

electrophotographic samples were evaluated in subjective tests. 
Observers (n = 29) were university students and naïve as regards to 
print and image quality. The tests were carried out in a laboratory 
covered with mid-gray curtains and tablecloths. The illumination 
on the evaluation table was 2200 lux and color temperature 6500 
K. For easier handling, the randomly numbered images were 
attached to mid-gray frames. 

The four attributes were evaluated as semantic differentials 
(e.g. blurry–sharp) on a questionnaire on a 5-point category scale 
(e.g. 1: clearly blurrier than sample set average, 2: slightly blurrier, 
3: about the average, 4: slightly sharper, 5: clearly sharper). The 
samples of one image content at a time were placed on the table in 
a random order. The observer was asked to evaluate each sample 
on all attribute scales. Order of the contents was randomized and 
three versions of the questionnaire were used with different 
attribute orders. 
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Results and Discussion 
The computational quality data is illustrated in Fig. 4 showing 

the attributes as a function of paper roughness. It is evident that the 
differences arising from the image content are prominent 
compared to the differences arising from the paper. The original 
images were characterized by different blur, noise, contrast and 
colorfulness values (computed at the same resolution as from the 
prints) and although printing on paper may lead to a considerable 
change in this, the plots remained distinct for the three images. 
Moreover, it can be observed that compared to the original images, 
the prints were more blurred and contrast was lower. 

With increasing roughness, blur of the ink-jet prints decreased 
whereas blur computed from the electrophotographic prints 
remained almost unchanged. Noise of the electrophotographic 
prints had an unexpected trend of decreasing as roughness 

increased, whereas noise of the ink-jet prints showed an opposite 
trend. For both printing methods, contrast decreased expectedly as 
roughness increased. Colorfulness did not show any distinct trend 
on either of the printing methods. 

One-way ANOVAs were performed to analyze the effect of 
image content and paper grade on the computed quality attributes. 
As expected based on Fig. 4, image content had a significant effect 
on all the four attributes (p being < 0.001 for all attributes) for 
both printing methods. Within the electrophotographic samples, 
paper grade had no effect on any of the attributes (p being 0.17 for 
noise and 1.00 for others). Within the ink-jet samples, paper grade 
had a significant effect on noise (p = 0.05), but again no effect on 
the other three attributes (p = 1.00 for all). These results underline 
the challenges raised by noise both within and between the two 
printing methods. 
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Figure 4. Computed quality attribute values as a function of PPS roughness: electrophotography samples on the left, ink-jet samples on the right. A roughness 
of 0.0 μm denotes the original digital image.  
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Figure 5. Subjective quality attribute values of electrophotographic prints as a function of the corresponding computed values. On the subjective graininess 
scale 1 denotes grainy and 5 non-grainy. The arrow points to the expected direction of the trend. 

Fig. 5 illustrates the subjective quality attribute values against 
the corresponding computed values. Only the data on contrast and 
in part colorfulness follow the expected trend. No clear trends can 
be discerned in the cases of sharpness and graininess. As already 
noted above, for electrophotographic prints computed noise was 
lower on rougher papers. Subjectively, prints on these papers were 
considered to be grainier. Clearly the situation is rather complex. 

A two-way repeated measures ANOVA was performed to 
analyze the effect of image content and paper grade on the 
subjective quality attribute values. Paper grade had a significant 
effect on each attribute (p < 0.001 for all attributes), whereas 
image content had statistically no effect on any of the attributes (p 
ranging from 0.18 to 0.92). This can be understood by the fact that 
the image contents were evaluated separately and the means and 
standard deviations were very similar for all three content types. 

The interactions between image content and paper grade for 
each attribute were also analyzed. For contrast (p = 0.001) and 
colorfulness (p < 0.001), a significant interaction was found, 
whereas for sharpness (p = 0.09) and graininess (p = 0.06) the 
interaction was almost significant. This strongly implies that the 
performance of the papers varied depending on the image content. 

Conclusions 
The study was motivated by the need to develop measurement 

of four-color digital print quality from the standpoint of paper and 
end-user. The focus was on computation of quality from digitized 
photographic images printed on different kinds of paper by both 
electrophotography and ink-jet.  

The results confirmed the high importance of the image 
content. Current practice is to use several images in the tests 
whereas the challenge for the future is to combine the relevant 
features in a single image. It was also found that as far as 
computational quality is concerned, the print context brings about 

many new, especially noise-related issues. These complicate the 
application of quality algorithms which have been developed for 
digital images. Finding optimal algorithms and tuning them for use 
on printed images requires further study. 
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