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Abstract 
The similarity between torsion-solid mechanics and 

incompressible-viscous tube flow is investigated by finite element 
solutions of the governing partial differential equations. After the 
numerical solutions are validated against several well-known 
analytical functions for noncircular shapes, a method is presented 
to illustrate how hydraulic resistance factors may be computed 
from the polar moment of inertia. Since the results are scaleable, 
the macroscopic solid mechanics information can be used to 
predict the viscous pressure loss term for micro-machined flow 
features. The numerical technique is then further developed to 
estimate the Laplace pressure jump across the main terminal 
meniscus in noncircular capillaries. The solid mechanics based 
numerical technique is demonstrated on several special cases 
involving horizontal and vertical capillary flow in noncircular 
regimes. The numerical technique compares well to published 
experimental results. Then a nozzle shape figure of merit is 
derived, and applied to a variety of noncircular shapes. Finally, 
the numerical methods are merged into the LXK droplet simulation 
model where their effectiveness is demonstrated against lab data 
from a wide experimental space for thermal inkjet. 

Introduction  
Fluid flow in micro-machined channels is a central topic in the 
inkjet industry. It finds broad applications in other MEMS devices 
as well. Analytical methods exist to compute the viscous and 
capillary behavior of simple shapes; like elliptical, rectangular and 
triangular tube shapes. For more complex shapes, the hydraulic 
diameter approximation is often used, but it is well-known that this 
method produces large errors. It will be shown that a numerical 
technique used for analyzing torsion in solid metal bars leads to a 
method for quantifying the viscous and capillary behavior of 
noncircular tubes. A method is then presented showing how to 
experimentally determine the micro-scale viscous and capillary 
behavior of noncircular tubes from a macro-scale solid mechanics 
test.  
 Since refill time is a fundamental parameter limiting the fire 
frequency of thermal inkjet, it is desirable to investigate; what is 
the optimum nozzle shape? To that end, a dimensionless, nozzle 
shape figure of merit is derived and exercised on a variety of 
contenders. 

Torsion of Noncircular Bars 
When torque is applied to a noncircular bar, the displacements 
have horizontal and vertical components. It can be shown that the 
governing equation is [1]: 
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Φ = warping function 
Φ(Γ) = 0 on the boundary 
G = shear modulus of the material (Pa) 
Θ = twist angle per unit length (rad/m) 
 
Across any (x, y) cross section, the warping function represents a 
surface. Torque is proportional to the volume under this surface, 
and shear stress is proportional to the gradients of Φ. 
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T = torque (N-m) 
τij = shear stress components (Pa) 
 
Note that Eq.(1) has the same form as the Navier-Stokes equation 
for one dimensional, viscous, incompressible flow. Also note that 
Eq.(2) has a form similar to the expression for volumetric flow 
rate, and Eq.(3) has a form similar to the shear stress term for 
Newtonian fluids. The similarity even applies to the boundary 
conditions. In the torsion problem Φ goes to zero on the boundary, 
and in the tube flow analog, velocity goes to zero at the wall. 

Incompressible Viscous Tube Flow 
For low Reynolds numbers, as is typical in capillary flow, it is 
reasonable to assume that the liquid velocity has only one 
component, (u) along the tube axis. The Navier-Stokes equation 
reduces to [2]: 
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µ = dynamic viscosity (Pa-s) 
u = axial velocity (m/s) 
u(Γ) = 0 at the wall 
dp/dz = pressure gradient in the flow direction (Pa/m) 
 
The flow analog of torque is volumetric flow rate dV/dt (m3/s): 
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The similarity between Eq.(1,4) and Eq.(2,5) is readily apparent. 
This suggests that the finite element analysis techniques [3] used to 
solve the solid mechanics problem may also be used for the 
viscous tube flow problem, but before illustrating that let us define 
the flow resistance factor (β). 
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β = flow resistance factor (m-4) 
dp/dz = pressure gradient (Pa/m) 
µ = dynamic viscosity (Pa-s) 
Q = dV/dt = volumetric flow rate (m3/s) 
 
Note that (β) has units of length-4. Thus the flow resistance factor 
is purely a geometric property of the tube shape. Also, the polar 
moment of inertia used in solid mechanics torsion has units of 
(length4), so the similarity continues.  

Since the pressure gradient and viscosity terms are factored 
out in the calculation of (β), they may be set to unity. This 
simplifies the finite element problem to meshing just the flow 
cross section and solving an elliptic partial differential equation. 
Then the hydraulic resistance factor is obtained by integrating the 
solution over the tube exit area: 
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u*(x,y) = velocity function 
u*(Γ) = 0: the velocity function goes to zero at the wall 
β = hydraulic resistance factor (m-4) 
 
Now let�s illustrate the similarity of solutions between solid 
mechanics (Φ) and the velocity function (u*). Let�s assume the 
cross section is the interstitial cavity formed by three 1 mm rods, 
and a similarly shaped torsion bar. Figure 1 shows the finite 
element solution for the velocity function (u*), and Figure 2 shows 
the normalized warping function (Φ) for the solid torsion bar. The 
solutions are identical. 

 
Figure 1: Velocity function (u*) for flow regime of triangular packed rods 

 
Figure 2: Warping function (Φ) for similar shaped torsion bar 

Hydraulic Resistance Factor 
For noncircular tubes, the problem has long been how to use 
Poiseulle�s equation [Eq.(9-10)] when the tube cross section 
cannot be defined simply by a diameter (d). The hydraulic 
approximation method is found as frequently in the literature as 
are references to the large errors that it produces for noncircular 
cross sections. Inserting Eq.(12) into Eq.(11) is supposed to 
provide an estimate of the hydraulic resistance factor [5]. 
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∆P1 = pressure drop due to flow in the tube (Pa)   [4] 
L = tube length (m) 
dV/dt = Q = volumetric flow rate (m3/s) 
d = tube diameter (m) 
β = hydraulic resistance factor for the tube (m-4) 
DHYD = hydraulic diameter (m) 
 
To illustrate the folly of relying on the hydraulic approximation 
Eq.(12) let�s use it to compute (β) for elliptical and rectangular 
tubes. Analytical solutions [6,7] exist [Eq.(13-15)] for both of 
these shapes, so we can quantify the error associated with Eq.(12). 
Contrasting the inaccuracy of Eq.(12), the finite element solutions 
of Eq.(7-8) follow the analytical solutions precisely, as shown in 
Figure 3. 
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Figure 3: Hydraulic approximation versus finite element solution for (β) 

Solid Mechanics and Hydraulic Resistance 
An experimental practice for characterizing fluid flow in MEMS 
devices is the use of micro-particle image velocimetry (micro-PIV) 
[8]. However, as the flow channel decreases in size, so must the 
seed particle size. As seed particles become smaller, the effects of 
Brownian motion must be accounted for to obtain accurate 
measurements from particle tracking. In addition to this 
complication micro-PIV requires illumination of the flow field. 
MEMS and inkjet applications need an alternative method to 
characterize the viscous and capillary behavior of micron-scale 
tube flow. 
 As was demonstrated, the same finite element method may be 
used for tube flow and torsion problems because of the similarity 
in their governing equations. Pressure gradient drives flow, while 
twist angle drives torque. Shear modulus is the material property 
in the solid mechanics problem, while viscosity is the material 
property in the fluid mechanics problem. Polar moment of inertia 
is the geometric property of the cross section in the solid 
mechanics problem, and the hydraulic resistance factor is the 
matching parameter in the tube flow problem. All of this suggests 
that hydraulic resistance factors could be obtained experimentally 
with a mechanical test.  
 Flow rates may be readily measured in macroscopic flow 
regimes; however, micro-machined features are difficult to 
characterize experimentally. This is where the solid mechanics 
approach can help. The following procedure permits a relatively 
simple torsion test to be translated such that it reveals information 
about the flow characteristics in micro-machined features. 
 When the tube deviates from round, exact solutions for (β) 
are rare. The same is true in solid mechanics. When a torsion bar 
shape deviates from round, exact solutions for the polar moment of 

inertia (J) are rare; however, they are readily measured because the 
shear modulus of common metals is well known. Applying a 
specific twist angle per unit length (Θ) and measuring torque (T) 
on a metal bar with a known shear modulus (G) leads to a solution 
of Eq.(16) for polar moment of inertia (J). 
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It can be shown that the polar moment of inertia (J) is related to 
the hydraulic resistance factor (β) by Eq.(17). Note that the 4-
coefficient in Eq.(17) comes from the product of the 2-coefficients 
in Eq.(1-2). The inverse relationship between (J) and (β) is 
obvious from Eq.(6 and 16). 
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The special case of round tube versus round bar provides a 
convenient sanity test for Eq.(17). The hydraulic resistance factor 
of a round tube is given by: [β = 128/πd4]. The polar moment of a 
round bar is: [J = πd4/32]. Combining these two expressions leads 
back to Eq.(17). 
 Thus, by the use of Eq.(17), the hydraulic resistance factor of 
any arbitrary tube shape may be determined by a solid mechanics 
torsion test on a bar of the same shape. However, MEMS flow 
features are on the order of microns in size, so it would be 
impractical to attempt a mechanical measurement of polar moment 
of inertia on micron size torsion bars. Fortunately, the results are 
scaleable. For example, to convert from a macroscopic, centimeter 
scale solid torsion bar to a micron sized MEMS flow tube, the 
appropriate scale factor (SF) is 1016 µm4/cm4. Thus to convert a 
macro-scale torsion result to a micro-scale hydraulic flow 
resistance factor: 
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For example, Kim and Whitesides [9] reported experimental data 
for flow in a 1.75 micron square tube. To monitor the flow they 
used micro-imaging to observe imbibition rate. They commented 
that their hydraulic diameter approximation [i.e. Eq.(12)] did not 
agree well with their data. Their actual flow data suggested an 
effective DHYD value of 2.0 microns instead of the value computed 
by Eq.(12). What if, instead of using the hydraulic approximation 
method and measuring meniscus motion, they had torsion tested a 
1.75 cm square, solid aluminum bar (G = 26 GPa) to predict the 
actual hydraulic resistance of a 1.75 micron square tube?  
Analytical expression for torsion in rectangular bars [1]: 
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• By Eq.(19-20), or by finite element analysis of Eq.(1-2), or by 
mechanical measurement: J = 1.311 x 10-8 m4 

• By Eq.(18): β = 3.051 x 1024 m-4 
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• Then by Eq.(11): DHYD = 1.95 microns. This compares quite 
well with the 2 µm value suggested by Kim & Whitesides� 
data 

Therefore, a simple, macroscopic torsion test on a 1.75 cm solid 
aluminum bar would have given the Harvard researchers the 
microscopic flow characteristic they were seeking. 

Capillary Flow 
When liquid penetrates a capillary, the meniscus at the base of the 
liquid-gas interface is often referred to as the main terminal 
meniscus. The curvature of the main terminal meniscus dictates its 
capillary rise. Capillary rise in vertical tubes may be computed by 
equating the Laplace pressure jump across the meniscus to the 
gravimetric pressure head. Capillary rise (h) is defined by the well-
known [10]: 
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Where: 
h = meniscus rise (m) 
σ = surface tension of the liquid (N/m) 
ρ = liquid density (kg/m3) 
g = acceleration due to gravity (m/s2) 
κ = meniscus curvature (m-1) 
 
For circular tubes the solution to Eq.(21) is straightforward 
because meniscus curvature (κ) is simply (2cosθ/d), where θ is the 
tube wall-meniscus contact angle, and d is the tube diameter. For 
noncircular tubes the solution to Eq.(21) is not straightforward 
because meniscus curvature is generally unknown. To sidestep this 
difficulty it is common practice to substitute the hydraulic 
diameter approximation (DHYD) of Eq.(12) into Eq.(21) in place of 
(d). However, it was demonstrated in Figure 3 that DHYD provides 
an inaccurate estimator for computing (β), so there should be little 
hope that it will be an accurate estimator of capillary rise in 
noncircular tubes. Rather than use the wetted perimeter 
approximation, let us approach the problem a little differently. The 
finite element solution of Eq.(7-8) provided accurate results for the 
hydraulic resistance factor (β), as did the solid mechanics torsion 
test method described by Eq.(18). Rearranging Eq.(21) such that 
capillary rise (h) is a function of the hydraulic resistance factor 
(β): 
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Now let us validate this expression against a variety of special 
cases that have known experimental results. 

Capillary Rise Model Validation 
Experimental data for several noncircular cases has been reported 
by Bico and Quere�[11]. They measured the vertical rise of the 
main terminal meniscus of cyclohexane in perfectly wetting square 
tubes. Figure 4 verifies that the measured data is well represented 
by the solution methods presented in this paper. The same authors 
also published data for capillary rise in fiber bundles. Recall that 
Figure 1 showed the velocity function for the triangular packing 

case. Figure 5 verifies that the model described here well-
represents that experimental data too. 

 
Figure 4: Capillary rise of cyclohexane in square tubes 

 
Figure 5: Capillary rise of cyclohexane in fiber bundles 

An especially interesting capillary is formed by a rod-in-corner. 
Figure 6 illustrates the velocity function for this special case. The 
(β) values derived from this flow field are then used in Eq.(22) to 
compute capillary rise. Experimental results have been reported by 
Mason and Morrow [12] for the rod-in-corner capillary. Their 
experiment placed perfectly wetting steel rods against the corner of 
an L-shaped aluminum slab. Their measured iso-octane rise is 
compared against the numerical solutions of this paper in Figure 7. 
Once again the results are remarkably consistent.  

It is important to note at this point that the earlier described 
torsion test method could also have been used because we now 
know that it is possible to transform a solid mechanics experiment 
into a fluid mechanics (β) value by use of Eq.(18), and then use 
Eq.(22) to compute capillary rise (h).  
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Figure 6: Velocity function for rod-in-corner capillary 

 
Figure 7: Rise of iso-octane for rod-in-corner capillary 

Horizontal Capillary 
When the capillary tube is horizontal, the gravimetric pressure 
goes to zero, so Eq.(22) does not apply. Nor does it apply in cases 
where the Bond number is <<1 (e.g. MEMS, inkjet). For cases 
where the gravitational effect is negligible, the Washburn equation 
[10] Eq.(23) relates the Laplace pressure jump across the meniscus 
to the viscous pressure drop due to flow.  
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Where: 
z� = imbibition front velocity (m/s) 
r = capillary tube radius (m) 
L = length of liquid imbibition front (m) 
(σ,θ,µ) previously defined 
 
Note that Eq.(23) only applies to the special case of circular 
capillary shapes. When the capillary is noncircular it is common 
practice to estimate (r) by the wetted perimeter, hydraulic 

approximation method. Unfortunately, as discussed earlier, this 
leads to large errors as the capillary shape departs further and 
further from circularity.  
 Since it was just demonstrated that the finite element method 
solution of Eq.(7,8,22), or the solid mechanics torsion test method 
in conjunction with Eq.(18), provided very accurate results for 
vertical capillaries, we have every reason to expect that they will 
also work well on horizontal capillaries. So let us now derive an 
expression for imbibition velocity in a noncircular capillary with a 
negligible Bond number. 
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∆P2 = pressure jump across the meniscus (Pa) 
AT = cross section area of the capillary (m2) 
z� = imbibition front velocity (m/s), i.e. meniscus motion  
Q = volumetric flow rate (m3/s) 
σ =surface tension (N/m) 
θ = contact angle (rad) 
β = hydraulic resistance factor (m-4) 
L = length of the imbibition front (m) 
Setting ∆P2 = ∆P1, substituting Eq.(25) for Q and solving for z� we 
arrive at a general expression for imbibition velocity: 
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For noncircular capillaries, (β) is solved as previously described � 
either by finite element analysis methods, or solid mechanics 
measurements of (J) the polar moment of inertia of an equivalent 
torsion bar. Note that for circular capillaries, Eq.(26) reverts to the 
Washburn equation. Also note that Eq.(26) implies a linear 
relationship between imbibition velocity and the interfacial free 
energy term (σ cosθ). An experimental verification of this fact 
exists in the earlier mentioned experiment by Kim and Whitesides 
[9]. They varied contact angle by chemical means and measured 
imbibition rate in horizontal, 1.75 µm square capillary tubes. The 
plot of z� versus cosθ showed a linear relationship indeed exists. 
Furthermore, they reported that the slope of the regression plot 
corresponded to a hydraulic diameter of 2 µm. This experimental 
value is just 2.5% different from the number computed earlier in 
this paper using the solid mechanics method. 

Nozzle Shape Figure of Merit 
Now that we have demonstrated and validated a numerical 
technique to quantify the viscous and capillary behavior of any 
arbitrary tube shape, let�s utilize it on some noncircular tubes with 
feature sizes in the realm of typical inkjet nozzles. Specifically, 
we�re interested in finding the optimum nozzle shape. 
 The first example is a serrated capillary. This tube shape may 
be defined by three parameters: inside radius (b), outside radius (a) 
and number of teeth (N). Figure 8 shows the finite element 
solution of the velocity function (u*) for a 24 tooth serrated nozzle 
having an inside radius of 6 µm and an outside radius of 10 µm. 
For this specific case, the finite element solution of Eq.(7,8) tells 
us that the hydraulic resistance value (β) equals 1.64x1021 m-4, and 
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the exit area is 188 µm2. Let�s further assume a 20 degree contact 
angle and the liquid in the nozzle has inkjet-like properties (σ = 
0.030 N/m). Then by Eq.(24) the meniscus pressure is 8982 Pa. A 
round nozzle with the same exit area would have a radius of 7.73 
µm. The same liquid in an equal area round tube would have a 
capillary pressure of 7294 Pa. Thus for an equivalent flow area, 
the serrated nozzle achieves a 23% greater pressure jump across 
the meniscus.  

Since refill is accomplished by capillary pressure, and the 
serrated nozzle has higher meniscus pressure than an equivalent 
area round nozzle, one might jump to the conclusion that inkjet 
nozzles should be serrated. Furthermore, it can be shown that all 
noncircular nozzles have higher meniscus pressure than equal area 
round nozzles. Indeed the literature has many examples that cite 
this superiority [13-17]. Given the higher meniscus pressure in 
noncircular nozzles, and the ever increasing speed requirements 
for inkjet, it begs the question:�Why, after more than two decades 
of commercial products, are virtually all thermal inkjet nozzles 
round, or nearly round�? Commercial inkjet products may have 
nozzles that are tapered along their length axis, but their cross 
sections are almost always circular. There must be more to the 
nozzle figure of merit than meniscus pressure (or meniscus 
curvature).  

Since refill time is the gating factor with regards to inkjet fire 
frequency, perhaps it is appropriate to derive a nozzle figure of 
merit that deals with time. Consider that equal area tubes will have 
equal volume per unit length, and refill time is a function of 
replacing the volume that was just displaced by the vapor bubble. 
So the race to refill equal volume displacements through nozzles 
having equal areas will go to the nozzle shape having the highest 
imbibition front velocity.  

Comparing the imbibition front velocity between noncircular 
and circular tubes of equal area with the same liquid and interface 
properties results in a dimensionless figure of merit for any given 
cross section shape. It will be shown that this figure of merit is 
strictly a function of cross section geometry since all other terms 
cancel when the ratio is formed.  
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ξ = nozzle shape figure of merit 
z�NC = imbibition front velocity for noncircular nozzle 
z�C = imbibition front velocity for circular nozzle 
Substituting Eq.(26) into Eq.(27): 
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βNC = hydraulic resistance factor for noncircular nozzle 
βC = hydraulic resistance factor for circular nozzle 
Note that (βNC) is obtained by: 
• Finite element solution of Eq.(7,8) � or, 
• Solid mechanics torsion test and Eq.(18) to convert polar 

moment of inertia (J) into (βNC). 
Recall that for a circular capillary: 
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Since we are comparing equal area nozzles (AT), we can substitute: 
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Recall that the serrated tube example had a hydraulic resistance 
factor of 1.64 x 1021 m-4 and a cross section area of 188 µm2. This 
nozzle area might be utilized in a modern 4-7 pl droplet ejector, if 
indeed it proves superior to a simple circle.  

Unfortunately, upon inserting these values into Eq.(29) we 
find that the serrated nozzle has a figure of merit (ξ) equal to 0.53. 
In other words, even though the serrated nozzle has a greater 
meniscus pressure than an equal area round tube, it also has higher 
viscous losses. The increased viscous loss more than offsets the 
meniscus pressure gain. Accordingly, it follows that an equal 
volume of liquid would take 53% more time to travel an equal 
distance in this particular serrated nozzle as it would in an equal 
area round nozzle.  

Similar calculations on a variety of other noncircular shapes 
(star, elliptical and clover shaped) return (ξ) values less than unity 
as well. Figure 9 summarizes the figure of merit values for several 
nozzle shapes as a function of (b/a). Note that (ξ) goes to one as 
(b/a) goes to unity because at this point the cross section is a 
circle.  
 

 
Figure 8: Velocity function for serrated nozzle shape 
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Figure 9: Nozzle shape figure of merit 

According to Figure 9, the worst nozzle shape to use in inkjet 
applications would be serrated. Perhaps that is why such shapes 
have not made an appearance in the commercial world. Star and 
clover shaped nozzles do not fare much better. None of these 
shapes have ever shown up in a commercial product. In light of 
Figure 9 this fact is not surprising. Elliptical or near-elliptical slot 
shaped nozzles have made their way into the marketplace. These 
shapes are of interest for several reasons.  
• As vertical resolution increases, the chip real estate available 

to place nozzles becomes ever smaller. An ellipse/slot permits 
the use of the horizontal dimension to obtain the nozzle area 
needed.  

• Figure 9 shows that there is not much (ξ) degradation until the 
b/a ratio of an ellipse/slot shaped nozzle ratio drops below 0.5 

FEAJET Simulation Model 
The teachings of this article have been merged into the Lexmark 
inkjet simulation model (FEAJET). This model is an application-
specific, multi-physics, finite element simulation tool. It accurately 
accounts for the electro-thermo-hydrodynamics of the inkjet 
printing process [18-20]. The model inputs include: 
• Thin film structure 
• Thin film material properties 
• Resistor shape and size 
• Ink formulation 
• Electrical driving means 
• Flow features 
A representative output summary is shown in Figure 10. The 
tapered elliptical nozzle of Figure 10 varies in cross section over 
its length. This is handled by writing Eq.(9) as an integral. 
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Since inkjet flow is impulsive, the model needs more than just the 
flow resistance terms. It also needs to account for the inertial 
terms. Inertance is handled by a finite element solution of the flow 
potential (Ψ) over the domain. 
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 Ψ = flow potential (dimensionless) 
Ai = acoustic inertance at inlets, outlets i,j,k,�(kg/m4) 
ρ = liquid density (kg/m3) 
ni = unit normal vector at surfaces of interest i,j,k� 
nidS = area of surfaces of interest i,j,k�(m2) 
Vi = displaced volume at surfaces i,j,k�(m3) 
t = time (s) 
PV = phase change pressure at the bubble wall (Pa) 
∆P = viscous pressure drop (Pa) 
 
Eq.(33) is analogous to transient current flow in a parallel path LR 
circuit. There is insufficient space here to describe the FEAJET 
solution means for the other variables in the simulation: 
• 2D Electric field (by finite element) 
• 2D Current density field (by finite element) 
• 2D Transient heat transfer (by finite element) 
• Ink formulation dependent nucleation response 
• Viscosity-temperature-evaporation response of the mixture 
• Thermodynamic properties of the mixture 
• Liquid-vapor phase change 
• Bubble growth and collapse 
• Refill time and meniscus dynamics 
 
The simulation-experimental correlation for the ejector of Figure 
10 is excellent:  
• Simulated droplet volume 27.3 vs. 27 pl measured 
• Simulated droplet velocity 508 vs. 524 in/s measured 
• Simulated refill time 104 vs. 100 µs measured 
 
Figures 11-12 show the correlation between simulation and 
experimental results over a wide experimental space. 
 

 
Figure 10: Typical FEAJET simulation result 
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Figure 11: Droplet mass correlation: simulation vs. measured 

 
Figure 12: Refill time correlation: simulation vs. measured 

Summary 
Because of the similarities in their governing equations, laminar-
viscous-incompressible flow in noncircular tubes may be solved 
with the same numerical techniques as used in torsion, solid 
mechanics problems. The method was then expanded to include 
capillary effects. The numerical technique was validated against 
known analytical solutions and published experimental data. A 
method of translating macroscopic torsion test results into 
hydraulic resistance factors and meniscus curvature values was 
also presented. 
 A nozzle figure of merit was derived. The figure of merit was 
based upon the imbibition front velocity in capillaries with 
negligible Bond numbers. It showed that the preferred inkjet 
nozzle cross section is circular because the race to refill equal 

volumes of liquid, in equal area nozzles, will go to the circular 
shape not the noncircular shape. In cases where chip real estate is 
limited (i.e. closely spaced, high dpi ejectors) ellipse/slot shaped 
nozzles may be used as long as the minor/major dimension is 
greater than 0.5. 
 Finally, the numerical techniques were merged with the 
Lexmark electro-thermo-hydrodynamic simulation tool. The 
correlation between lab data and numerical results has been 
excellent over a wide experimental space. 
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