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Abstract
In this paper, a robust multi-pass printing method is intro-

duced. This is a technique where a new design variable is in-
cluded: a weight factor A(n) that affects the density of dots being
printed by every nozzle in the print-head. In the paper, the dot
density of a vertical multi-pass system is described in an analyti-
cal expression. Then, it is theoretically shown how the minimiza-
tion of the roughness measure of above expression with respect to
A(n) leads to a closed expression for the optimal dot density at
every pass, or, in other words, to the optimal multi-pass system.

Introduction
A key aspect on the design of an inkjet printer is the multi-

pass system, sometimes called interlace system, which allows the
printer to achieve higher resolutions in the vertical and horizon-
tal directions with a lower resolution print head. The basic idea
behind multi-pass printing is to divide the number N of available
nozzles of the print head in a number of sectors K that acts as the
multiplier of the printing resolution. Vertical interlacing, how-
ever, only performs well as long as the media transport mech-
anism works properly. Many times the advancing steps of the
media have small, microscopic offsets mostly due to slippage be-
tween transport and substrate. This source of error introduces an
artifact commonly known as banding, from the fact that it shows
as a fairly regular pattern with periodicity exactly equal to the size
of the printing bands. The manufacturers of desktop inkjet print-
ers usually calibrate their hardware to mitigate the effect of band-
ing for their recommended media. The problem with large format
printers is that the media substrates may vary drastically from one
print to the next, for example from paper-thin vinyl to 1/8-inch
PVC board, thus making it virtually impossible to compensate for
the error only mechanically. Therefore, and in addition to the nec-
essary mechanical adjustments to the printer, the system requires
the multi-pass printing system to be robust enough to compensate
for inaccuracies as much as possible. In this paper, a robust multi-
pass printing method is introduced. This is a technique where a
new design variable is included: a weight factor A(n) that affects
the density of dots being printed by every nozzle in the print head.
This work starts by describing the dot density of a vertical multi-
pass system in an analytical expression. Then, it is shown how
the minimization of the roughness measure of above expression
with respect to A(n) leads to a closed expression for the optimal
dot density at every pass, or, in other words, to the optimal multi-
pass system. Visual results are included to show the dramatic
difference in image quality between conventional multi-pass and
robust multi-pass in a real large-format printing system.

Multipass Printing
An important part of any inkjet printer is its multipass sys-

tem, which allows the printer to achieve high resolutions in the
vertical direction with a lower resolution print head. The basic

idea behind multipass printing is to divide the number N of avail-
able nozzles in the print head in a number of sectors Ky that will
act as the multiplier of the printing resolution. More precisely, let
us denote the Þnal printing resolution as R f and the original print
head resolution as Ro. The number of sectors in which the noz-
zles need to be divided is Ky = Rf

Ro
. A further condition is that Ky

must be an integer, or , in other words, R f can only be a multiple
of the original resolution Ro. Once the print head is divided in
sectors (of the same size), the multipass printing algorithm can be
described as follows.

1. Set m = 0. m keeps the count of the number of passes over
the entire image.

2. The media advances a distance S = m× ∆y×N
Ky

−Oy, where
∆y is the distance between two adjacent nozzles, i.e. the
reciprocal of the actual print head resolution, and N is a

multiple of Ky. The term Oy = mod(m,Ky)×∆y
Ky

is the offset
term that actually places the nozzles slightly delayed every
time, thus achieving a higher printing resolution.

3. Print using all the nozzles.

4. Set m = m+1. Go to step 2.

The image is printed in sections or bands that get completed
whenever the print head has passed Ky times over that region
of the media. Since the Þrst and the last Ky − 1 bands do not
complete the minimum number of passes they cannot be used to
print image data. Instead, a zero padding is used in those regions
as it is shown in Fig. 1.

It is not hard to realize that the same multipass principle
can be used to increase the resolution on the horizontal direction
as well, by simply addressing every line a number of times
Kx > 1. In such case, Kx acts as the horizontal resolution
multiplier, and therefore the print head needs to be divided in
Kx × Ky equally-sized sectors. The algorithm described above
may be modiÞed to account for Kx in the following manner:

1. Set m = 0.
2. The media advances a distance S = m× ∆y×N

Ky×Kx
−Oy, where

∆y is still the distance between two adjacent nozzles and N
is a multiple of Ky ∗Kx. The term Oy remains as previously
deÞned.

3. Print using all the nozzles starting at an offset

Ox = mod(m,Kx)×∆x
Kx

.

4. Set m = m+1. Go to step 2.

Before analyzing the problems that multipass printing faces, it
is necessary to express the process in a mathematical way. In
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Figure 1. In this example the span of a print head has been divided in three

sectors (Ky = 3), and the entire image has been covered in 6 passes. The

image is divided in 8 bands, from which the Þrst and the last 2 ,corresponding

to (Ky −1) cannot be used for printing (zero padded regions).

order to simplify the analysis, this description could involve only
variables along one dimension. For simplicity, let us deÞne the
proÞle of the print head as the composition of the cross-sections
of the dots, i.e. the dot proÞles1 that are printed by the nozzles at
the positions that the multipass algorithm indicates:

I(y) =
M

∑
m=0

N−1

∑
n=0

P(y−n.∆y−m.S +Om), (1)

where S = ∆y.N
Ky.Kx

, and Om = mod(m,Ky).∆y
Ky

. Here M represents the

total number of passes, and the function P(y) represents the one
dimensional dot proÞle. This deÞnition needs to be completed
further by adding the fact that the human visual system works as
a low-pass Þlter, hence

I(y) =
M

∑
m=0

N−1

∑
n=0

Ph(y−n.∆y−m.S +Om)

with Ph(y) = P(y) ∗ h(y), where h(y) is the human visual system
response. Fig. 2 shows a simple dot proÞle that we can use to

1The simplest dot proÞle could be a square pulse

describe multipass printing.

Sometimes the process of multipass printing is also called

Figure 2. The square pulse P(x) describes a dot proÞle, which is the view

of a cross section of a dot along the vertical (or horizontal) printing axis. The

function Ph(x) is the same dot proÞle after being convolved with the human

visual response.

interlace, and the parameters Ky and Kx replaced by their indexes.
Likewise, some people specify a printing mode by referring
to the number of passes needed to Þll a band and the type of
interlace that is being used. For example, a way to describe a
printing mode could be: 12-pass mode, with X-interlace = 3 and
Y -interlace = 4. This way of describing multipass printing is
rather common and will be used in further sections.

Banding
Multipass printing works extremely well as long as the print

head, the media transport mechanism, and the nozzles work prop-
erly. Many times, however, the nozzles clog, the print head is
misaligned, and the media steps have small, microscopic offsets.
All of these sources of error introduce an artifact called banding
from the fact that it shows as a fairly regular line pattern with
periodicity exactly equal to the length of the printing bands. As-
suming that the print head is calibrated and properly aligned, the
effects of faulty nozzles and media transport can be lessened by
using X-interlace. In the case of faulty nozzles, the logic behind
the use of X-interlace is very simple: by using more than one noz-
zle to address the same line, the probability of having empty lines
in the printed image will be smaller. It is also possible to design
the interlace to minimize the banding coming from offset errors.
Figures 3 and 4 show the effects of multipass printing in an ideal
printer and in a printer with some error offset in the media trans-
port system. The same Þgures show the relationship between the
mathematical model deÞned above and image quality in both sce-
narios. In the latter case, when errors are introduced, equation
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Figure 3. In this Þgure we illustrate the 1-D model. In a perfect printer the

multipass system produces a smooth and ßat dot-density response.

Figure 4. A printer exhibits banding when some error affects the media

transport system. This can be 1-D modeled as a periodic increase in density

on certain regions of the image.

(1) becomes

I(y) =
M

∑
m=0

N−1

∑
n=0

Ph(y−n.∆y−m.S +Om +η),

where the term η denotes the microscopic error at every pass.
All other terms in the expression remain as deÞned above.
Essentially, media transport systems are rolling devices (pinch-
rollers and a drive roller or a belt) that use the friction against
the media to accurately transport it. A vacuum system helps
to hold the media in-place during the print, and gives more
stability when transporting the media from pass to pass. The
greater contributor to offsets then, is the inertia of the substrate
which causes slippage between media and rollers. In order to
prevent this, printers usually are calibrated by the manufacturer to
compensate the excess play for a recommended set of substrates.
In high-accuracy systems the substrates are designed such that
some physical properties, like media curling, are optimized for
the internal mechanism. The problem with large format printers
is that the media substrate may change drastically in dimension
and weight from one print to the next. Therefore, and in addition
to the necessary adjustments in the vacuum pressure that holds
the media attached to the moving belt, the system requires
the multipass printing to be robust enough to compensate for
inaccuracies as much as possible. Although the error η has a
strong deterministic origin, it is still considered a non-zero mean,
independent gaussian random variable, where both parameters,

mean and variance are much smaller than the nozzle-to-nozzle
spacing (µη << ∆y,ση << ∆y). This latter condition makes η
appear as a nearly constant value for the duration of the print, i.e.
causing the banding to be quasi-periodic.

Robust Multipass
Before starting the analysis, it will be assumed that the Y -

interlace is equal to one (Ky = 1), which is an assumption that
by no means affects the generality of the analysis, but it rather
simpliÞes the use of some terms. From the algorithms described
in the previous section, as well as from the expression above for
I(y), it is apparent that the density of dots at every pass is a con-
stant across the nozzles in the print head. More precisely, the den-
sity at every pass must be 1/Kx in order to complete every band
in the image. For instance, a multipass system with X-interlace
= 2 prints 50% of the dots in one pass and the other 50% in the
next and so forth until it Þnishes printing the image. In reality, the
density of dots across the print head could take any form as long
as 100% of the dots in the band have been printed after Kx passes.
In order to take advantage of this, a new variable is introduced,
a weight factor An that affects the density of dots being printed
by every nozzle. Recalling a former expression, the mathematical
description of multipass printing becomes

I(y) =
M

∑
m=0

N−1

∑
n=0

An.Ph(y−n.∆y−m.S +Om +η), (2)

under the constraint that
N
Kx

−1

∑
n=0

Kx−1

∑
k=0

An+ k.N
Kx

= 1.

Notice that An describes a discrete set of N numbers, one per noz-
zle, in the range [0..1]. Minimization of the roughness measure
of equation (2) with respect to An leads to the optimal weights for
every pass, or, in other words, to the optimal multipass. Rough-
ness of an arbitrary function f (y), as classically deÞned in the
literature is

R =
∫ b

a

(∂ j f (y)
∂y j

)2
dy,

where the range [a..b] is the domain of the function. In our case,
that domain is the region between the actual start and the end of
the image, i.e. excluding the zero-padding zones. The order j
of the partial derivative controls the degree of smoothness, that is
greater smoothness is achieved with higher order derivatives. The
problem of Þnding the optimal An is stated as

Anoptim = min
An

E

{∫ b

a

(∂ jI(y,An,η)
∂y j

)2
dy

}
,

where E {·} is the statistical expectation operator. Under the as-
sumptions that N −1 >> 1, ∆y → 0 and (N −1)×∆y = L, where
L is the physical length of the print head measured from the Þrst
to the last nozzle, and also rearranging some terms, equation(2)
transforms into

I(y) = Ph(y+η)∗
M

∑
m=0

A(y−m
L
Kx

), (3)
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where A(y) has become a continuous function. Now, evaluation
of roughness in this expression is somewhat straightforward if we
include the integrals from the deÞnition of convolution. Rearrang-
ing the terms, and integrating over a sufÞciently large distance,
that is, making a →−∞, b → ∞

R = E

{∫ ∞

−∞
Ph(t +η)

∫ ∞

−∞
Ph(τ +η)

∫ ∞

−∞
ψ j(y− t,y− τ)dydτdt

}
,

where

ψ j(y−t,y−τ) =
M

∑
v=0

∂ jA(y− v L
Kx

− t)

∂y j

M

∑
u=0

∂ jA(y−u L
Kx

− τ)
∂y j .

Using the substitution �y = y− t

R = E

{∫ ∞

−∞
Ph(t +η)

∫ ∞

−∞
Ph(τ +η)

∫ ∞

−∞
ψ j( �y, �y+ t − τ)d �ydτdt

}
.

Now, substituting λ = τ− t, and rearranging the terms

R =
∫ ∞

−∞
�ΦPh(λ )

∫ ∞

−∞
ψ j( �y, �y−λ )d �ydλ , (4)

with

�ΦPh(λ ) = E

{∫ ∞

−∞
Ph(t +η)Ph(λ + t +η)dt

}
.

In a variational approach, equation (4) is the deÞnition of a
weighted smoothing spline, where the weight function is given by
the autocorrelation of the dot proÞle Ph(λ ), i.e. �ΦPh(λ ). The so-
lution of this problem depends greatly on the shape of Ph; imple-
mentation could easily turn cumbersome, and therefore not practi-
cal. However, the more serious drawback, in terms of robustness,
is still the direct dependence on η . Two practical conditions facil-
itate the task of Þnding a more robust yet optimal function A(y).
The Þrst condition is that the dot proÞle Ph is a function with a
Þnite width ∆ = ∆y/Ky, and that the width itself is much smaller
than the size of the print head (∆ << L) which is the compact
support of the function A(y). This is easy to see in practice: a
printed dot usually has a diameter no bigger than 100 microns
while the length L of a print head typically measures several cen-
timeters, this means that in many cases the ratio L/∆ reaches two
orders of magnitude. The second condition is that the mean and
the variance of the offset term η are in the microscopic range,
and they are much smaller than the interspace between scanlines,
i.e. µη << ∆, ση << ∆. Under these conditions, the function
�ΦPh(λ ) approximates to a Dirac�s delta2. Using the appropriate
mathematical properties, equation (4) then reduces to

R ≈
∫ ∞

−∞

M

∑
v=0

∂ jA(y− v L
Kx

)

∂y j

M

∑
u=0

∂ jA(y−u L
Kx

)

∂y j dy. (5)

The function A(y) that minimizes equation (5) can be found in
the literature[1, 2, 3], and it is the polynomial spline of order
j, also known as the polynomial B-spline of order j. Polyno-
mial B-splines are symmetrical functions that could be deÞned in
many ways, but a very succinct and useful deÞnition is found in

2see Appendix section

[4, 5]. Schoenberg�s deÞnition of a real, symmetrical polynomial
B-spline of order j is

A j(y) =
j+1

∑
i=0

(−1)i

j!

( j +1
i

)(
y+

j +1
2

− i
) j

.U
(

y+
j +1

2
− i

)
,

(6)

where

U(y) =
{

0 : y < 0
1 : y ≥ 0 .

In order to comply with the aforementioned constraint that

N
Kx

−1

∑
n=0

Kx−1

∑
k=0

An+k. N
Kx

= 1,

the order of the B-spline must be j = Kx − 1. This is in accord
with the fact that an X-interlace of higher order (i.e. a higher
B-Spline order) produces a smoother appearance.

In practice, the actual density of dots used in the multipass
must be a sampled version of A j(y), where samples occur at
every nozzle position. Of course, the domain of the B-spline also
has to equal the length of the print head, which means that the
optimal set of weights for the multipass uses the deÞnition of a
B-spline that Þts perfectly on L, as shown in Fig. 6. Sampling the
B-spline from equation (6), after scaling and shifting, yields the
optimal multipass weights

An =
Kx

∑
i=0

(−1)i

(Kx −1)!

( Kx

i

)(n+ Kx−N
2 − i

N
Kx

)Kx
.U

(n+ Kx−N
2 − i

N
Kx

)
,

(7)

that is, the optimal density of dots to be printed by the nth nozzle

Figure 6. An illustration of the shape of the optimal weights in a 180-nozzle

multipass printing system, with Kx = 4

(n ∈ [0..N − 1]) in a mode with Kx passes. Notably, a zero-order
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Figure 5. A visual example of robust multipass, in which the image �Iguana� has been printed using an X-interlace mode = 2, Þrst using the conventional

multipass algorithm (left) and then using robust multipass (right).

spline is not suitable for multipass, since it implies no overlapping
of passes, i.e. Kx > 1. Also, it needs to be remarked that taking
into account the number of passes Ky for the Y -interlace does not
modify the expression above. Fig. 6 illustrates the distribution of
weights in an optimal multipass system. Likewise, Fig. 7 shows
the effect of optimal versus conventional multipass printing.

Results
As a demonstration of the method, Figure 5 shows two prints

from a large format printer, with and without robust multipass.
It is apparent that the print that does not use robust multipass
suffers from a type of banding that appears as streaks, of regions
with different glossiness. The print with robust multipass shows
a great reduction of this problem.

Also in this Þnal section, two Þndings on optimal weighted
multipass need to be commented. A Þrst Þnding, through direct
observation, is on the general shape of the weights. From the
results above, it is notable that as the order of the B-spline
increases, the use of the nozzles at each end of the print head
approaches to zero, and this leads to inefÞciency, particularly on
the distribution of power when Þring the nozzles at every pass.
Whether this is a real drawback or not remains a matter of further
investigation. A second Þnding on weighted multipass is that,
albeit the smoothness of the results, it introduces a little deviation
in the Þnal density of the print, as it is shown in the detail of
Fig. 7. This deviation is very small, nonetheless, it deserved
a little more investigation, for the sake of color consistency.
Through simulations it was determined that the deviation is a
linear function (with negative slope) of the offset η and that it
increases linearly with the order of the B-spline. The slope of
the density change is in turn a non-linear function (exponential)
that decreases with the size of the printband. Since the deviation
is a function of the offset error η , the direct consequence might
be the introduction of random variations in the Þnal color of
the print, i.e. color inconsistencies from print to print. Both
Þndings lead to the same conclusion: weighted multipass is an

Figure 7. Robust multipass smooths the print dramatically

effective mechanism to reduce banding and improve dramatically
the quality of printing, however, it is preferable to use lower
order B-spline weights, especially when the goal is to keep
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color consistency under certain tolerance. However, we need
to mention that in our tests, good results in terms of color
consistency and smoothness were always attained with interlaces
of order Kx ≤ 6.
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Appendix
Rigorously, the function ΦPh (λ ) needs to be a nascent delta function,

in the sense that

lim∆→0

∫ ∞

−∞
ΦPh (λ ,∆) f (λ )dλ = f (0),

for all continuous f (·). Here, 2∆ = ∆y/Ky is the compact support of ΦPh .
Since the integral only take values in the neighborhood of zero, we can
start by replacing f (·) by its Maclaurin series, that is

lim∆→0

∫ ∆

−∆
ΦPh (λ ,∆)

∞

∑
n=0

1
n!

f (n)(0)λ ndλ

= lim∆→0

∞

∑
n=0

1
n!

f (n)(0)
∫ ∆

−∆
ΦPh (λ ,∆)λ ndλ

where the limits of the integral have already been replaced, and the term
f (n) represents the nth derivative of f (·). By deÞnition, the autocorrelation
ΦPh is an even function, that is ΦPh (x) = ΦPh (−x), therefore all odd terms
(n odd) in the summation vanish, and the expression above reduces to

lim∆→0 f (0)+
∞

∑
n=1

1
(2n)!

f (2n)(0)
∫ ∆

−∆
ΦPh (λ ,∆)λ 2ndλ ,

where, by convenience, we have assumed that

∫ ∆

−∆
ΦPh (λ ,∆)dλ = 1.

Recalling that Ph(x) = P(x) ∗ h(x), and assuming that the H.V.S model
h(x) is a smooth continuous function, for instance a gaussian function,
then

Φ(i)
Ph

(x) = Ph(x)⊗P(i)
h (x)

= Ph(x)⊗ (h(i)(x)∗P(x)),

where ⊗ and ∗ denote the correlation and convolution operators, respec-
tively. From this result we can conclude that the derivatives of ΦPh (x)
exist and therefore we can replace it by its Maclaurin expansion as well.
The expression of the limit becomes

lim∆→0 f (0)+
∞

∑
n=1

1
(2n)!

f (2n)(0)
∫ ∆

−∆

∞

∑
k=0

1
k!
Φ(k)

Ph
(0)λ 2n+kdλ

= lim∆→0 f (0)+
∞

∑
n=1

f (2n)(0)
(2n)!

∞

∑
k=0

Φ(k)
Ph

(0)∆2n+k+1
(
1− (−1)2n+k+1

)
k!(2n+ k +1)

= f (0), (8)

proving that ΦPh is a nascent delta. In the Þnal step, we need to evaluate
the expectation operator

�ΦPh (λ ) = E
{
ΦPh (λ +η)

}

=
∫ ∞

−∞
ΦPh (λ +η)

1√
2πση

e
− (η−µη )2

2σ2
η dη .

Since, in general, ση << ∆, the gaussian curve behaves also as a nascent
delta in this integral (i.e gaussians are well-known nascent delta func-
tions); using the result in (8) and the practical fact that µη << ∆ as well,
the expression above becomes

�ΦPh (λ ) = ΦPh (λ +µη )

= δ (λ +µη )

≈ δ (λ ).
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