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Abstract 
A computational method for drop optimization for inkjet 

nozzle design using the Monte-Carlo method is demonstrated. To 
this end, a generic computational fluid dynamics (CFD) model of 
ink drop formation is developed as a platform for the Monte Carlo 
optimization. Important variables in the model are then 
parameterized so that they can be modified within a prescribed 
space. By applying the Monte-Carlo method, sensitivities of drop 
formation output parameters to various input parameters are 
studied in the context of the CFD model. Once sensitivities of drop 
formation to input variables are understood, the parameter space 
is then intelligently explored to determine a set of optimized 
parameters for the inkjet nozzle.   

Introduction 
With inkjet printing speeds becoming faster and printing 

resolutions getting finer, ink drops must be jetted faster at higher 
frequencies and be smaller in volume than ever [1]. One of the 
technical challenges for developing such printing technology is its 
nozzle design. Only an optimally engineered nozzle can ensure 
suitable drop formation for fast and high quality printing. Among 
many parameters that impact drop formation, some of the most 
important ones include the shape and dimensions of the nozzle and 
ink chamber, as well as nozzle operation conditions such as 
dynamic pressure at the ink inlet, static pressure in the ink 
chamber, and ink temperature in the chamber, etc. For thermal 
inkjet printing, dimensions and locations of the electrical resistor, 
as well as thermal energy input to the resistor, would also impact 
drop formation significantly. In addition, the impact of these 
parameters to drop formation are intertwined; in other words, the 
degrees of freedom of the inkjet nozzle are conjugated. It is 
extremely difficult, if not impossible to explore all combined 
possibilities using traditional error-and-trial methods without deep 
understanding of the problem at large.  

Fortunately Monte-Carlo (MC) methods [2, 3] are especially 
developed and designed to study such problems with a large 
number of coupled degrees of freedom. MC methods provide 
approximate solutions to problems by performing statistical 
sampling experiments on a computer. With a MC method, a 
problem with a large number of degrees of freedom can be 
sampled in a number of random configurations, and that data can 
be used to describe the system as a whole. Ink drop optimization 
for inkjet nozzle design can be an excellent application for the MC 
method. In this work, an example of the MC method applied to ink 
drop optimization is demonstrated. 

For purposes of this study, a generic computational fluid 
dynamic (CFD) model of ink drop formation from an inkjet nozzle 
is developed as a platform for the Monte Carlo optimization. 
Important variables in the model are then parameterized so that 
they can be modified within a prescribed space automatically. By 

applying the MC method, sensitivities of drop formation output 
parameters to various input parameters are studied in the context of 
the CFD model. Once sensitivities of drop formation input 
variables are understood, the parameter space is then intelligently 
explored to determine a set of optimized parameters for the inkjet 
nozzle.  

Problem Formulation 
Figure 1 schematically shows a cross-sectional view of a 

three-dimensional generic thermal inkjet nozzle assembly. For 
clarity of presentation, dimensions in Figure 1 are not scaled.  

 

 
 

Figure 1 Cross-sectional view of a generic thermal inkjet nozzle assembly 

(dimensions are not scaled) 

 
The generic thermal inkjet nozzle assembly shown in Figure 1 

primarily consists of a cylindrical-shaped nozzle, a hexahedral ink 
chamber operatively connected to the nozzle, a rectangle electrical 
resistor lying on a wall of the ink chamber, and aqueous-based ink 
fluid. The cylindrical nozzle has a radius of r, a height of h, and an 
angle of α as defined in Figure 1. To optimize an ink drop, the x-
position of the nozzle can be shifted to left and right relative to the 
ink chamber. For numerical modeling purpose, the ambient 
environment around ink droplets (not shown in Figure 1) is 
truncated into a bounded computational hexahedron domain filled 
with air of room temperature and pressure. The truncated domain 
should be large enough to minimize numerical boundary effects on 
drop formation. Initially the ink chamber and the nozzle are filled 
with ink fluid. To fire an ink drop, electrical current pulse is 
applied to the electrical resistor, creating a heat pulse on the 
resistor surface of a temperature as high as ~580K (higher than 
water saturation temperature). Ink fluid in close proximity to the 
hotly heated surface of the resistor film-boils instantaneously and 
leads to a water vapor bubble rapid expansion. The expanded 
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vapor bubble pushes some of ink in the ink chamber out through 
the nozzle, forming an ink filament. The ink filament pinches off 
and forms an ink drop flying away against the nozzle. Subsequent 
to drop ejection, the vapor bubble collapses, and the ink chamber is 
refilled with ink fluid through ink feeding channels via capillary 
force mechanism primarily.   

The number of degrees of freedom of the ink drop formation 
processes are large. A comprehensive investigation of the impact 
of the all the degrees of freedom for drop formation requires long 
and expensive computation times and is most efficiently handled 
with  large-scale architectures. For a simple demonstration of the 
Monte-Carlo optimization method, the degrees of freedom in this 
study are intentionally limited to three. Namely, we only explore 
the impact of the nozzle radius r, angle α, and x-position of the 
nozzle on drop formation. As a platform for the MC optimization, 
a generic CFD model of ink drop formation is developed.  

Generic CFD Modeling 
A computational fluid dynamic model for vapor bubbles 

induced drop ejecting from the generic nozzle assembly is 
developed in a three-phase (water vapor, air and ink liquid) volume 
of fluid (VOF) framework [4, 5]. The simulation of drop 
generation involves an ink liquid vaporization model that accounts 
for mass and energy transfer between ink and vapor due to thermal 
resistor heating. Parameterized scripts are developed to create 
geometrical variables and operational parameters for the sake of 
automatic implementation of the Monte-Carlo optimization. For 
simplicity, no ink refilling process is simulated in the model. Only 
drop/satellite formation is considered.  

Governing Equations 
Let the volume fraction of phase i in a computational control 

volume be denoted by iα , where subscript li = represents the ink 

phase, gi = air phase, and vi =  water vapor phase, where 

1=++ vgl ααα . The continuity equation, in terms of the air phase 

volume fraction gα , liquid volume fraction lα , and vapor phase 

volume fraction vα , may be respectively expressed as, 
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where lS and vS represent the source terms given by liquid 

vaporization induced by the resistor electrical heating.  
The momentum equation is given by 
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Here g is the gravitational acceleration and p is the pressure; 

the density ρ and the viscosity µ are defined as  

 

vvggll ραραραρ ++=  and vvggll µαµαµαµ ++= ,         (3) 

 
and Fσ is the body force due to surface tension, which can be 
defined as [6]   
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if the interface is between air and ink drops. Here the local 
curvature n�⋅∇=κ , where ||/�

lln αα ∇∇= , and σ represents the 

surface tension coefficient. Surface-tension force, is one of the 
critical mechanisms that determine the shape of a drop and its 
breakup/detachment [7]. For the interface between vapor and ink, 
we assumed the body force could be approximated by Equation (4) 
as well.  

Similarly, a single energy equation is solved among the 
phases,  
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where h is enthalpy, T represents temperature, keff  is effective 
thermal conductivity, and SE denotes the energy source term given 
by electrical energy input to the electrical resistor.   

Solution Techniques 
A volume of fluid (VOF) multiphase-phase fluid model, 

which solves the volume fraction of each phase within each control 
volume, along with a piece-linear interface calculation (PLIC) 
approach of Youngs [6, 8], is implemented to track interfaces 
between the vapor-liquid phases evolving in time. For numerical 
solution of the system, Equations (1), (2) and (5) are cast in an 
integral form as, 
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where φ represents a general transport quantity. In the continuity 
equation, 1=φ , in the momentum equation v=φ , and in the 

energy equation h=φ ; Ξ  is the diffusion coefficient, and φS  is 

the source term for quantity φ. A is the area vector, and V 
represents the control volume, which is identified with each mesh 
element. The governing equations (6) are solved using a 
commercially available CFD software package Fluent 
(www.fluent.com) with customized source terms implemented in 
user defined functions (UDF).  

A three-dimensional generic computational domain is 
automatically created using a commercially available meshing 
software package Gambit. A Gambit script is developed to 
parameterize the computational domain so that the Monte-Carlo 

772 Society for Imaging Science and Technology



 

program can automatically modify these parameters for modeling 
and optimization. The computational domain is discretized with an 
unstructured grid initially comprising twenty thousands or so 
tetrahedral elements. The mesh would have been refined to render 
the drop shape more accurately if large-scale computational 
resource were available for the simulation.  

For the time-dependent drop formation simulation, the 
governing equation is solved using an explicit time-marching 
scheme. A solution algorithm so-called the semi-implicit pressure-
linked equation algorithm [9] is adopted for the numerical solution 
of the governing equations Equation (6). The interface Γ between 
the ink liquid and air or vapor is a material surface that follows the 
ink fluid motion. A linear interface is assumed between the two 
fluids within each computational element, i.e., the interface Γ is 
approximated by a piecewise-linear function [8]. At each time step 
the location and slope of the linear interface within an element is 
approximated from the volume fraction of liquid hydrogen lα , and 

a normal vector to the interface n� . The piecewise interface Γ is 

advanced with the normal velocity nvv �⋅=Γ

rr

 (which constitutes the 

PLIC approach of Youngs [7]). The mass flux of each fluid into 
neighboring computational elements can be determined, during 
time τ across the face Γ of a computational element, by 

∫ ∫ Γ=Φ dFdtviF

rα .   

Monte Carlo Optimization 
Figure 2 shows a flow diagram for the Monte Carlo 

simulation.  
 
 

 

 
Figure 2 Monte-Carlo optimization flow diagram 

 
Since this simulation must run non-interactively, scripts are 

employed to take advantage of the open architectures of the 
components. In this case, parameterized Gambit and Fluent scripts 
are created. The Gambit script is used to create variable geometry 
model, and the Fluent script is used to drive solution output data. 
Python, C and Cygwin/Unix utilities are used to glue the various 
components of the simulation together and massage the data. The 
scripts are created in a flexible manner to allow for the addition of 
new parameters as the project progresses and the solution space is 
broadened.  

Within a prescribed dimensional space, the Monte Carlo 
program generates random parameters for each case. In this 
example, the parameters are the radius r and angle α of the nozzle 
and the x-position of the nozzle relative to the ink chamber. 
Although they can be any geometric, non-geometric, or solution 
related parameters, only geometric parameters are considered in 
the current demonstration. The Gambit script creates the 
appropriate computational domain, and generates meshes; the 
Fluent script builds the CFD model, sets up operation parameters 
and runs the CFD model automatically. After each computation, 
the result data is stored, and the mesh is efficiently swept to 
determine drop volume, drop center of gravity, number of 
satellites, and extents, etc., using custom C code developed for 
these purposes. The reduced data for each case is stored as to be 
easily retrieved and visualized. VTK and Matlab scripts are created 
for post processing.  

As the database of information grows it is important to be 
able to easily go back and examine the parameters and results of a 
specific case. We often find that the simulation will stray outside a 
feasible (or desirable) region; for example, these cases can remain 
in the database, but can be excluded from the Postprocessing step. 
The excluded cases may or may not have results associated with 
them. This has an additional benefit: we don�t need to be especially 
careful about the scope and interdependencies of the input 
parameters. A common example of this occurs when driving 
complex geometries where there can be significant 
interdependencies and the domain may fail to resolve. If this 
occurs the case fails, but the simulation continues with no 
corruption of the database and those results are excluded by 
default.  

Typically a merit function is set to control optimization 
iteration. Here we are creating a database of simulations to explore 
the domain. We can write multiple optimization functions against 
that data before or after the simulation is complete. In this case we 
can run the number of simulations up to a level where we achieve 
the a desired statistical fit for the response surface, or use it to 
simply understand the response of various outputs to the input 
parameters, as demonstrated in Figure 6 in the �Results and 
Discussion� chapter.  

Results and Discussion 
Figure 3 shows a snapshot of a simulated ink drop with a 

satellite from a nozzle. An elongated drop, followed by a satellite 
flying away the nozzle is shown in the figure. This kind ink drop is 
very commonly observed in experiments.  
 

 
 
Figure 3 Visual representation of a drop and its satellite simulated by the CFD 
model.  

 
For MC optimization efficiency, the number of elements in 

the computational domain is limited to no more than 20,000 to 
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ensure for each case, simulation machine time is less than 10 
minutes. Due to this constraint, the simulated drop shown in Figure 
3 is rather coarse. But the resolution is fine enough for technical 
demonstration purposes that the paper is intended. Also, please 
notice that that the CFD model should be validated first before 
using the model to run any optimization. Due to time constrain, no 
model validation is conducted so far. But again, the work is 
intended for methodology demonstration purpose only at this 
point.  

All example parameters in this study are driven with uniform 
random variables and the examples are for proof-of-concept 
application only. Figure 4 shows visual representations of six 
randomly selected geometric changes within a prescribed space. 
The change of the radius r, angle α, and x-position are randomly 
combined with the parameters are selected by the MC method.  
 

 
 
Figure 4 Visual representations of six randomly selected geometric changes 

 
Figure 5 shows visual representations of nine randomly 

selected drops ejected from a nozzle at the same elapsed time with 
different geometric parameters, similar with what are shown in 
Figure 4. Figure 5 vividly suggests that geometric configuration of 
the nozzle impacts drop formation dramatically in a manner of 
drop pinch-off, jetting direction, satellite formation, drop shape, 
and size, etc.  

 

    
 

   
 

    
 

 
Figure 5 Visual representations of nine drops ejected from a nozzle at the 
same elapsed time with different geometric parameters 

 
A beauty of using Monte-Carlo optimization is to be able to 

statistically analysis the parametric impacts to the merit function. 
In other words, sensitivities of output drop formation parameters to 
various input parameters can be studied. For example, Figure 6 
shows statistic matrix of scatter plots generated using the MC 
simulation data, which descriptively suggests the geometric 
parameters� impacts on drop formation.  

To be specific, the scatter plot suggests that the x-position of 
the nozzle drives the centroid and possibly the total volume, while 
the radius clearly drives the centroid, eject length, and total 
volume. Figure 6 also suggests that the nozzle angle has little 
impact on drop characteristics, largely due to the height of the 
nozzle is thin in the model. In short, this type of plot visually 
demonstrates scope and scale of input and output correlations, and 
can help identify and bound the inputs of a particular problem. For 
example, Figure 6 shows that, to generate a drop of around 1.4 pL 
in size, the radius of the nozzle may be varied between 7 and 9 
micrometers.  

 

 
 
Figure 6 Matrix of scatter plots 

 
Figure 7 shows a response surface for a particular merit 

function in 3 normalized parameters based on the data above (90% 
confidence bands are shown for the quadratic surface fit). These 
plots are particularly useful in refining the ranges of parameters to 
find a local optimum for a given merit function. Multiple merit 
functions can be considered using a Pareto-front approach [10, 11]. 

 

 
 

Figure 7 Response surface for a volume based merit function using the rstool 
function in Matlab. 
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Concluding Remarks 
A computational method for drop optimization for inkjet 

nozzle design using the Monte-Carlo method is demonstrated. A 
generic computational fluid dynamics model of ink drop formation 
is developed as the platform for the Monte Carlo optimization.  

Although they can be any geometric, non-geometric, or 
solution related parameters, only geometric parameters are 
considered in the present demonstration. Namely, the impacts of 
nozzle radius, angle and its x-position on drop formation have been 
studied. Results of numerical experiment suggest that geometric 
configuration of the nozzle impacts drop formation dramatically in 
a manner of drop pinch-off, jetting direction, satellite formation, 
drop shape, and size, etc. 

This work, as a first step towards to an optimal inkjet nozzle 
design, sheds some light on how the Monte Carlo method can be 
conjugated with a CFD model to facilitate engineering design of 
these difficult problems. This technique can yield not only an 
improved set of operating parameters for a system, but will 
generally result in a deeper understanding of the problem at large.  
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