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Abstract 
An optimization approach is proposed for suppressing the 

automoiré, also known as internal moiré, in multi-level periodic 
screen designs.  This artifact can appear when the halftone dots of 
a rational tangent screen do not have integer offsets in pixels.  
Starting with an ideal continuous space halftone pattern for a 
given level, a bounded, constrained convex optimization problem 
is solved to obtain the best discrete space halftone pattern values 
on the pixels of the supercell tile.  The optimization minimizes a 
least-squares spatial frequency weighted difference between the 
pattern when first reconstructed to continuous space by the 
printing system (e.g. exposure) and the ideal pattern. The resulting 
halftone pattern has been found to typically contain very little 
energy outside of the screen�s fundamental frequencies and 
harmonics while preserving the original ideal dot shape 
reasonably well.  A series of such patterns so derived can be 
converted to multi-level threshold arrays if the pattern values are 
quantized and the stacking constraint is enforced during 
optimization.  

Introduction 
To obtain close approximations to desired periodic screen 

frequencies and angles, a supercell method can be employed 
whereby halftone dots are placed on crossed lines of a rational 
slope within a tile.  This tile is designed so it can be applied 
periodically, producing an extension of the screen pattern. .  In 
general this approach will result in halftone dots that are not 
identical to one another since their placement in the tile will not 
necessarily be aligned to the pixel grid.   Such methods can still 
work well when the device resolution is high compared to the 
screen frequency, but at the lower resolutions typical to desktop 
electrophotography (EP), the dot-to-dot variations can lead to 
noticeable artifacts, and limit the usefulness of the method. 

These artifacts are referred to as �automoiré� or �internal 
moiré� because they represent an interference effect between the 
screen and the pixel grid.  The effect can also be understood as 
consequence of aliasing caused by sampling the ideal continuous 
space halftone pattern.  Methods to reduce automoiré typically 
involve using randomness to break-up the regular pattern, but the 
result is generally a grainier image with only partial reduction of 
the automoiré.  A better method is that of �Well-Tempered 
Screening� [1] which uses feedback from the filtered pixel pattern 
of the previous level to modify the thresholds during the design 
process.  The aliasing error implicit in the original discrete 
threshold array can be considered to be diffused across the tone 
scale. Much of the signal processing framework provided by this 
work informs the work presented here and was a source of 
inspiration.  However, because this approach was initially 
proposed for bi-level screening where it is inevitable that 

significant non-harmonics will be introduced at some tone levels, 
it is philosophically different than the method proposed here which 
attempts to completely optimize each level, among other 
differences. 

Multi-level halftoning can also be used to reduce automoiré 
by providing a mechanism for anti-aliasing.  Starting with a high 
resolution halftoning pattern, an anti-aliasing filter can be applied 
and the result sub-sampled to the device resolution.  Conventional 
box filtering approaches for creating multi-level threshold arrays 
[2] can be cast into this form.  However, box filters can still allow 
significant aliasing artifacts to pass through, whereas higher 
quality anti-aliasing filters will cause ringing outside of the 
dynamic range allowable for driving the printing system. 
Furthermore, the quantization of the halftone levels provides 
further restrictions on the quality that can be achieved.   

However, the fact that continuous-level halftone patterns in 
principle could be completely anti-aliased is tantalizing, and is the 
starting point for the proposed method.  

Frequency Domain Description of Rational 
Tangent Screens 

Here periodic screening patterns where the ratio of frequency 
components among the fundamentals is rational are considered.  
The advantage of such a design is that there is necessarily a finite 
square tile which can be applied periodically to recreate the 
infinite parallelogram tiling pattern [3]. The fundamental 
frequencies in the x- and y-directions can then be written as integer 
values in units of cycles per tile.  For simplicity we call them f1 = 
(A,B) and f2 = (C,D).  In the orthogonal case (C,D) = (B,-A).  Any 
of the harmonics can be represented by integer linear combinations 
of these fundamentals. 

In the space domain, the halftone dots can be considered to lie 
on the intersection of the parallel lines perpendicular to vectors 
(A,B) with spacing 1/√(A2+B2) and perpendicular to (C,D) with 
spacing 1/√(C2+D2) Note that this screen period is not the same as 
the length of the sides of the parallelograms thus formed, except in 
the orthogonal case, These sides are the dot center displacements 
and are given by the formulas:  

∆x1= B/(AD-BC)  

∆y1=-A/(AD-BC)  

∆x2= D/(AD-BC)  

∆y2=-C/(AD-BC) (1) 

 
 It is straightforward to derive that there are ⎥AD-BC⎜ such 

dot centers in the tile, so to avoid huge tile sizes A,B,C,D need to 
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be kept reasonably small in practical situations, and therefore 
desired angles and frequencies cannot always be arbitrarily closely 
approximated.  

In practice, the tile will contain an integer number of device 
pixels.  For simplicity assume the resolution is square with TS 
pixels in both the horizontal and vertical directions.  Such a 
discrete space pattern that is tiled periodically has an exact 
representation in the Discrete Fourier Transform (DFT) and the 
circular convolution that it implies.  Extension to rectangular tiles 
and/or rectangular pixels is elementary.  The dot displacements 
given in Equation 1 can be expressed in pixel units simply by 
multiplying by TS and in general will not be integer.  Therefore 
the halftone dots do not all lie in the same position relative to the 
pixel grid, which can lead to many design issues as discussed in 
the next section.  Instead it is often the case that the halftone cell 
displacements are designed in the spatial pixel domain to avoid 
such problems. For example, if the desired displacements are 
known in pixels, setting B = ∆x1, A = -∆y1, D = ∆x2, C = -∆y2, 
and TS =⎥AD-BC⎜will give such a square tile. 

Aliasing Formulation of Automoiré. 
Consider the following approach to halftone design. Using 

knowledge about the behavior of the printing system, the designer 
of the halftone chooses a desired dot shape for each input level.  In 
continuous space this can be considered as an ideal halftone 
pattern. This pattern is then converted to a discrete space halftone 
by sampling the ideal pattern at pixels. See Figure 1. The spot 
function formulation for dot growth can generally be cast into this 
form.  

In the case where the dot centers have integer pixel 
displacements, each halftone dot will be identical.  However in the 
general case described in the previous section, they will not have 
the same shape or even the same area.  In addition, these variations 
will occur in a regular manner with their own, often lower, 
frequency, causing them to be very visible.  From this point these 
are referred to as non-harmonic components because they are not 
integer multiples of the screen fundamentals; they are of course 
periodic in the tile period. 

This phenomenon can be understood in signal processing 
terms as aliasing.  Since the ideal halftone dot typically has 
significant harmonics above the Nyquist rate, they will be folded 
into the baseband and may appear as low frequency non-harmonic 
components.  It is interesting to note that this is occurring even in 
the integer cell displacement case, but the aliasing is occurring on 
top of harmonic components, so only the dot shape is distorted but 
the pattern remains periodic in the fundamentals. 

However, it is not mandatory to have integer dot 
displacement to avoid non-harmonic components.  If continuous 
values are allowed in the discrete pattern and if the reconstruction 
of the pattern to continuous space is band-limited, a discrete 

pattern can be created either by design or by complete anti-aliasing 
that will reconstruct to an image that only has components in the 
fundamental and harmonics below the Nyquist rate.  In practice, 
the halftone values are quantized and bounded, so this may not be 
completely achievable, but the energy in the unwanted components 
can be reduced significantly. 

A typical approach to multi-level halftoning can be 
considered as exactly such an attempt at anti-aliasing. Starting with 
a highly (M×N) over-sampled ideal bi-level halftone pattern, the 
image is filtered with an M×N box filter (equivalent to counting 
the �on� pixels under the box) and sub-sampling to produce the 
values.  It is convenient to choose M×N +1 to be equal to the 
number of desired levels.  The strength of the non-harmonics can 
be significantly reduced over the bi-level case, but not eliminated.  
See Figure 2. 

Other anti-aliasing filters are possible but practical 
considerations make them difficult to design.  Namely, the 
halftone values must fit a specified dynamic range related to the 
maximum and minimum driving values in the printing system.  
Therefore, filters that are sharp in the frequency domain, like the 
ideal sinc filter, cannot be used because of ringing.  Filters that are 
too smooth, like Gaussians, tend to make dots that are too fuzzy 
and may be produce output that is very sensitive to variations in 

printing system parameters. 
 

Figure 1: The ideal halftone dot pattern at input level 243 of 255 for the 
(1,4),(-4,1) screen.  Four tiles are shown.  The lighter dots show the sampling 
grid for TS=18.  It is apparent that the ideal halftone dots will not be sampled 
in the same relative positions. 
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Figure 2: The discrete halftone pattern produced by applying a box filter to 
the ideal pattern in Figure 1 and sampling to TS=18.  The low frequency 
automoiré is clearly visible. 

Proposed Optimization Approach. 
Instead of attempting to find optimal filters for anti-aliasing, a 

more direct approach to design the screen patterns is proposed 
here. By allowing the values of the halftone pattern on the tile to 
be the free variables in an optimization process, patterns are 
directly designed that are significantly free of non-harmonics 
while maintaining the ideal dot shape as closely as possible. 

Let vk(i,j) be a TS×TS halftone pattern for the input level k 
on the pixels of the tile that will be periodically applied.  When 
printing level k, the periodically replicated signal v will be used to 
drive the printing system, and, by nature of physical reality, will at 
some point be converted to continuous space. In 
electrophotography this is the optical exposure energy incident on 
the photosensitive drum.  For this method it is required to have a 
reasonable model for this reconstruction process which is lumped 
into a transformation H(⋅), i.e. exposure energy E(x,y) = H(v).  In 
most EP contexts the reconstruction can be modeled as a nonlinear 
system mapping halftone values to a scanning signal followed by a 
convolution with the optical profile of the light source.  The 
remainder of the printing system process φ(E(x,y)) from exposure 
through development does not need to be modeled if the ideal 
halftone pattern uk(x,y) has been designed to be robust with respect 
to the process, as clustered dot screening of appropriately low 
frequencies are known to be. Now, the important point is that φ(⋅) 
can be reasonably modeled by a point-wise, space-invariant 
nonlinear function to predict EP system output [4].  Therefore, if 
E(x,y) could be made to be exactly periodic in (A,B),(C,D) then 
the final predicted developed image will also be.  However, if non-
harmonic components are present, their effect may be amplified 
since the nonlinearity φ(⋅) typically has high gain around the 
operating point.  These non-harmonic components can be 
introduced by limitations (bounds and quantization) on the 

halftone values and/or by reconstruction aliasing if H(⋅) is not 
sufficiently bandlimiting. 

Given this framework, the goal is to find the discrete halftone 
pattern that produces an exposure as close to the ideal pattern as 
possible. Since it is more important to suppress non-harmonic 
components, especially those that are low-frequency and therefore 
visible, than preserve the exact dot shape, the difference between 
the ideal and obtained patterns is frequency weight accordingly by 
a transfer function Q. Combining these ideas, the goal of the 
optimization can be expressed: 

minimize  || Q( H(vk(i,j)) - u) ||2 (2) 

subject to:  0≤vk(i,j)≤1 (3) 
If H(⋅) is a linear operator the problem is convex and can be 

efficiently solved.  An example solution is shown in Figure 3. 
When designing screen patterns that are to be implemented as 

threshold arrays, the patterns should obey the stacking constraint.  
This can be incorporated into the optimization by using the bounds 
vk1(i,j) ≤ vk(i,j) ≤ vk3(i,j) where k1< k < k3. 

A more difficult practical concern to satisfy is the need for 
discrete levels in the halftone values.  Such discrete optimization 
problems are much more difficult to solve.  If a large enough 
number of levels are available (say 4-bit or more) the values vk(i,j) 
found in the continuous valued optimization can be quantized by 
rounding without introducing significant new errors.  However, at 
16 levels or less it is better to use an iterative procedure whereby 
chosen values of the continuous solution are fixed (e.g. those 
closest to a quantization level) and the remaining values are then 
re-optimized. 

 
Figure 3: The discrete halftone pattern produced by the optimization 
approach applied to the ideal pattern in Figure 1.  
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Example Application 
As a practical example, consider the orthogonal screen with 

fundamentals (1,4),(-4,1) and TS=18 pixels. At 600 dpi this is 
approximately 137.44 lpi at 75.96 degrees. With TS=17 this is a 
commonly used screen since the halftone cells have integer 
displacement, but with TS=18 they do not.  However, the TS=18 
version has the nice property that when it is used for the C and M 
(reflected) colorants it is C-M-K moiré cancelled when K is the 
conventional (3,3),(-3,3), TS=18 integer displacement screen, 
which at 600 dpi is approximately 141.42 lpi at 45 degrees. 

When sampled at TS=18 pixels/tile the (1,4),(-4,1) screen has 
a strong aliased components at (±1,0) (0,±1) which originate from 
the (±17,0),(0,±17) harmonics. As shown in Figure 4 this 
component is present in the discrete screen patterns across the tone 
scale even when a box-filter is used to create a multi-level screen.  
When printed on a 600 dpi 4-bit LED engine this is manifested at 
many tone levels as a 33.33 lpi automoiré at 0 degrees, which is 
highly visible. 

Figure 4. The energy at 33.33 lpi, 0 and 90 degrees for the 4-bit multilevel 
screen created using a box filter. 

The optimization approach of the previous section was 
implemented in Matlab code and was used to create a 4-bit 
threshold array based also on this design. The 18*18=324 variables 
were first optimized for the middle tone level and quantized by the 
iterative optimization scheme.  The patterns for all other levels 
were then determined by a recursive approach by dividing the 
remaining tone scale into halves and solving for the middle pattern 
with the appropriate constraints. The resulting patterns obey the 
stacking constraint and can be converted to a multi-level threshold 
array.  As shown in Figure 5, the (±1,0),(0,±1) components are 
significantly suppressed in the discrete screen patterns.  More 
importantly, they were not visible in the printed output of the test 
engine. 

 

Figure 5: The energy at 33.33 lpi, 0 and 90 degrees for the 4-bit multilevel 
screen created by the optimization approach. 

Conclusion 
An optimization approach was presented for suppressing the 

automoiré in multi-level periodic screen patterns.  A series of such 
patterns can be converted to multi-level threshold arrays if the 
pattern values are quantized and the stacking constraint is enforced 
during optimization.  Even under the practical constraints of 4-bit 
halftone value quantization and the stacking constraint, the 
automoiré in the optimized screen was suppressed across the tone 
scale and was not visible in the resulting experimental printed 
output. 
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