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Abstract  

 There remain some important issues related to the von Kries 
model which have not been clarified up until now. This article 
discusses fundamental mathematical characteristics related to one 
of the issues of the model. The important issue which have not been 
clarified and will be discussed in this paper is what is the 
conditions in the wavelength range for the best von Kries model 
fitting? Because of the multiplication between illuminant 
spectrums and object spectral reflectances, the conditions in the 
wavelength range give various resultant tristimulus values  though 
the von Kries model is a model with only three parameters. In the 
removal of colored illuminants, the model fitting has uncertainty. 
As the result of this paper, it is shown that the simplest von Kries 
model provides the best chromatic adaptation for sets of illuminant 
spectrum and object spectral reflectance which generate the 
centroid tristimulus values in the tristimulus region corresponding 
to the uncertainty. 
 

Introduction 

Chromatic adaptation is among the most important phenomena 
of the human visual system. In 1902, von Kries postulated a model 
for the chromatic adaptation phenomena of the human visual 
system.  

However, there remain some important issues related to the 
von Kries model which have not been clarified up until now. This 
article discusses fundamental mathematical characteristics related to 
one of the issues of the model which is the basis for all chromatic 
adaptation model. Improvements of psychophysical evaluation 
scores using such as non-linear model is another view point starting 
from the von Kries model, and will not be discussed in this article. 

The important issue which has not been clarified and will be 
discussed in this paper is what is the conditions in the wavelength 
range for the best von Kries model fitting? Related to the issue, 
there have been indications in Ref. 1) by us using the results of Ref. 
2), and in Ref. 3)  by Dr. M. H. Brill who have published many 
historically important articles related to chromatic adaptation. 

Because of the multiplication between illuminant spectrums 
and object spectral reflectances, the conditions in the wavelength 
range give various resultant tristimulus values  (non unique in the 
same way as subtractive color mixture) though the von Kries 

model is a model with only three parameters. In the removal of 
colored illuminants, the model fitting has uncertainty.    

As the result of this paper, it has been shown that the simplest 
von Kries model (the simple illuminant normalization) provides 
the best chromatic adaptation for sets of illuminant spectrum and 
object spectral reflectance which generate the centroid tristimulus 
values in the tristimulus region corresponding to the uncertainty. 
Although, the simplest model is called as a wrong model, the 
model is the best for sets of illuminant spectrum and object 
spectral reflectance satisfying the centroid from mathematical 
point of view. 
 

Theoretical model 

 
Notation 
 

( ) ( ) ( ) ( ) ( ) ( )* ,s I s d I dτ τ λ τ λλ λ λ λ λ λ= =∫ ∫                (1.a) 

 
( ) ( ) ( ) ( ) ,I dτρ ρ τ λλ λ λ λ= ∫                                       (1.b) 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

* ,

,

s I d

I s d
τρ ρ τ λλ λ λ λ τ

ρ τ λλ λ λ λ

= ∫

= ∫                         (1.c) 
 
where 

( ) ( ) ( ) ( ): x or y or zτ λ λ λ λ= ,
 ( )I λ : Illuminant spectral distribution 1, 

( )*I λ ( ) ( )( )I sλ λ= : Illuminant spectral distribution 2, 
( )s λ ( )( )0 s λ≤ : Illuminant operator, 
( )ρ λ ( )( )0 1ρ λ≤ ≤ : spectral reflectance. 

 
The notational Eq.(1) indicates that for the calculation scheme 

of tristimulus values 
( ) ( ) ( )*I dρ τ λλ λ λ∫ ( ) ( ) ( ) ( )( )I s dρ τ λλ λ λ λ= ∫ , ( )s λ  and ( )ρ λ  

corresponds to ( )1ρ λ  and ( )2ρ λ  in the discussions related to 
subtractive color mixture (References 2, 4 through 8)), respectively. 
Illuminant operator converts from ( )I λ  to ( )*I λ . ( )I λ  implies an 
illuminant before adaptation and ( )*I λ  implies an illuminant after 
adaptation. 

In this paper, the notation ( )ρ λ  is employed for all color 
types, and the following discussions are consistent not depending 
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on color types. The following color types are defined in ( )ρ λ  for 
Eq.(5). 
Ideal color ( ) ( )I

iρ λ : ( ) ( )I
iρ λ { }( )1, 2, , ni n I∈ =L  are assumed to 

either perfectly block or perfectly pass (take only 0 or 1 values), 
and the restriction of the four types of ideal color can be removed in 
our discussions. 
General color ( ) ( )G

iρ λ : ( ) ( )G
iρ λ  takes any value in [ ]0,1 ,  

Realistic color ( ) ( )R
iρ λ : correlations between ( ) ( )R

iρ λ  related to 
λ  are posed on general color. 
 
Tristimulus values 

J  denotes tristimulus values of X  or Y  or Z  corresponding 
to ( )x λ  or ( )y λ  or ( )z λ , respectively. Define tristimulus values 
as follows: 
 

( )*IJ s
τ

λ= ,                                                            (2.a) 

 

( )objJ
τ

ρ λ= .                                                          (2.b) 

 
Eq.(2.a) corresponds to the tristimulus values of the illuminant 

( )*I λ  derived from ( )I λ  operated by ( ) .s λ  Eq.(2.b) corresponds 

to the tristimulus values of an object of ( )ρ λ  under illuminant of 

( ) .I λ  IJ
 
denotes tristimulus values of the illuminant ( )I λ . 

Equations (2.a) and (2.b) are the defining constraint of the whole 
problem, and *IJ  and objJ  are inputs that define the constraints.  

 
Normalization 

The following normalizations are performed so Y stimulus 
value corresponds to 100.0 . 
 

( ) ( )* , 100.0 / 1I norm y
J s s

τ
λ λ= = ,                             (3.a) 

 

( ) ( ), 100.0 / 1obj norm y
J

τ
ρ λ ρ λ= = .                          (3.b) 

 
For simplicity of the conventional definition of normJ  devolves to 

( )*IJ s
τ

λ=  and ( )objJ
τ

ρ λ= . 

 
The following theorems are provided. 

 
[Theorem 1] 

Posit a random ensemble of pairs ( ) ( ){ },s ρλ λ  such that 

( ) *I
s Jτλ =  and ( ) / 2obj IJ Jτρ λ = = . Then the centroid of 

( ) ( )s τρλ λ  is as follows: 

 

( ) ( ) * /obj II
sE J J Jτρλ λ⎡ ⎤ =⎣ ⎦ ,                              (4) 

 
where 

E : expectation which calculates the centroid. 
 

Proof 
In APPENDIX. 
Theorem 2 describes the boundary conditions for the centroid 

formula. 
 
[Theorem 2] 

For 0objJ = , the centroid of ( ) ( )s τρλ λ  is 0.0 , and for 

obj IJ J= , the centroid of ( ) ( )s τρλ λ  is *IJ , and for both cases, 

the centroid is described in the form of * /obj IIJ J J . 

 
Proof 
       In APPENDIX. 
 

Combining Theorem 1 ( / 2obj IJ J= (middle)) with the 

boundary conditions of 0objJ = (minimum) and 

obj IJ J= (maximum) in Theorem 2, an approximation formula of 

the centroid has been constructed. 
In Refs. 4) through 8), the optimal color theory by 

Schrodinger has been extended  into subtractive color mixture. 
The extension can be applied in the following theorem 3. 
 
[Theorem 3] 
       The following inequalities are consistent. 
 

( ) ( ) ( ) ( ) ( ) ( )
,max ,max ,maxR G Is s s

τ τ τ
λ ρ λ λ ρ λ λ ρ λ≤ ≤       (5.a) 

 

( ) ( ) ( ) ( ) ( ) ( )
,min ,min ,minI G Rs s s

τ τ τ
λ ρ λ λ ρ λ λ ρ λ≤ ≤        (5.b) 

 
Proof  

Can be proven as an extension of Refs. 4) through 8). 
 
 
Analysis of Von Kries model using the 
theorems 
 

Theorems 1 and 2 are applied to analysis of the von Kries 
model. The following equation in Theorems 1 and 2 is transformed 
as follows: 
 

( ) ( ) ( ) ( ) ( ) ( ) * /obj II
sE E I s J J Jτρ ρ τλ λ λ λ λ λ⎡ ⎤ = ≅⎡ ⎤∑⎣ ⎦⎣ ⎦ .    (6) 

 
Eq.(6) is transformed as follows: 
 

( ) ( ) ( ) *
* /obj II

E J J JI ρ τλ λ λ⎡ ⎤ ≅∑⎣ ⎦ .                         (7) 

 
The right side of *,I I

J J  in Eq.(7) are moved to the left side of 

Eq.(7), and Eq.(8) is derived. 
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( ) ( ) ( ) *
* /I objI

J E J JI ρ τλ λ λ⎡ ⎤⋅ ≅∑⎣ ⎦ .                               (8) 

 

Assume that ( )*
cI λ  and ( )cρ λ  represent a set of illuminant 

spectrum and object spectral reflectance satisfying the centroid 

coordinate condition. Then Eq.(8) is represented using the 

notations as follows: 

 

( ) ( ) ( ){ } *
* /I objc c I

J J JI ρ τλ λ λ⋅ ≅∑ .                               (9) 

 
Eq.(9) is just the ratio model using the ratio between two illuminant 
coordinates which is the most primitive model in the von Kries type 
models. Eq.(9) derives the solution of the chromatic adaptation for 

the illuminant spectrum ( )*
cI λ  and the object spectral reflectance 

( )cρ λ  corresponding to the centroid coordinate. 

 
Numerical illustrations and considerations 

 
Figures 1 No.(1) through No.(8) show spectral reflectances 

employed in this numerical illustrations. These are JIS standard  
color patches (Munsell color patches) indexed by H , V , C  
values. In this illustrations, the chromatic adaptation predicts from 
under A  illuminant to 65D  illuminant. 

Table 1 shows the theoretical centroid in the right side of 
Eq.(4), and ( ) ( )s τρλ λ  for each case. These are plotted in Figures 
2(a)(b). 

No.(1) through No.(4)  are cases that the resultant stimulus 
values (adapted stimulus values) are on the centroid (Eq.(9) is 
consistent), and the simplest von Kries model is the best fitting for 
the prediction. On the other hand, No.(5) through No.(8) are cases 
that the resultant stimulus values are not on the centroid, and Eq.(9) 
is not consistent. 

From the inequalities of Eq.(5), this is explained that as 
approaching to ideal color (No.(5) through No.(8)), the existable 
min-max bound is enlarged, and the probabilities not on the 
centroid is increased. 
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Figure 1  Spectral reflectances. 
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                                        Table 1 
 

No.
H V C X Y Z X Y Z

(1) 2.5R 8 3 63.49 61.26 58.32 60.31 58.58 58.41
(2) 7.5G Y 7 4 36.00 42.29 29.54 35.42 42.90 28.44
(3) 5G 7 4 32.14 40.58 39.92 33.96 42.92 38.83
(4) 10RP 5 3 22.77 20.89 19.34 21.21 19.48 19.48
(5) 2.5R 5 14 42.35 25.93 10.80 32.05 18.55 11.31
(6) 5Y 8 12 65.68 64.60 7.89 56.29 58.31 6.57
(7) 2.5PB 6 8 21.44 26.38 60.36 26.75 30.06 61.02
(8) 7.5RP 6 12 51.12 35.85 28.44 42.40 28.95 29.53

C entroid <S(λ)ρ(λ)>HVC
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Figure 2  Theoretical centroid coordinate (black circle)  and 

adapted coordinate ( ) ( )s τρλ λ  (gray circle). 

 
 
 

       Although, the main results of this paper are the centroid 
formula and its relation to the simplest von Kries model, 
considerations are provided in relation to psychophysical 
experiments. 

In the existing psychophysical experiments, there has been no 
theoretical background for the selection of spectral reflectances in 
the experiments. Selection of spectral reflectances  
derives the best fitting model from the theoretical point of view. 
Considering the model structure of the von Kries model, also 
psychophysical experiments will be improved from theoretical point 
of view. 

After the discussions above, differences that remain between 
the human visual system and chromatic adaptation models should 
be investigated. 
 

Conclusions 
 

There remain some important issues related to the von Kries 
model which have not been clarified up until now. An important 
issue discussed in this paper is what is the conditions in the 
wavelength range for good von Kries model fitting? In this paper, 
our theorems derived for subtractive color mixture problems have 
been applied to the important issue related to the von Kries model. 
The theorems applied are for the centroid calculation and for the 
minimum and the maximum bounds calculation. 

As the result of this paper, it has been shown that Eq.(9) 
which is the simplest model in the von Kries type models derives 
the solution of the chromatic adaptation for the combination of 
illuminant spectrum and object spectral reflectance corresponding 
to the centroid coordinate.  

Numerical illustrations were provided for concrete 
explanations in which not only the centroid but also the minimum 
and the maximum bounds have been employed. Further theoretical 
analysis between the centroid and figures of spectral reflectances 
will be performed in our future presentations. 
       The mathematical structure of the von Kries model revealed in 
this paper will serve to analyze the essence of the set of various von 
Kries type models. Also psychophysical experiments will be 
improved from theoretical point of view. 
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APPENDIX 
      Through the following sequence, the main Theorems 1 and 2 
are proven. 
 
[PROPERTY 1] 

Define ( ) ( )1cρ λ ρ λ= − . So ( ) ( )s Jτρλ λ =  and 

( ) ( )s Jτρλ λ− = −  are on inside out relation, and *IJ  is a fixed 

offset value that ( ) ( )s Jτρλ λ =  and ( ) ( ) *c I
s J Jτρλ λ = −  are 

on inside out relation, and take the same length of the min-max 

range of J . Therefore, there exists one to one correspondence 

between ( ) ( )s Jτρλ λ =  and ( ) ( ) *c I
s J Jτρλ λ = − in the min-

max range. 

 
[PROPERTY 2] 

Indicate a pair of ( )s λ  and ( )ρ λ  as ( ) ( )( ),s ρλ λ . Because of 

the metamerism, there exist plural number of ( ) ( )( ),s ρλ λ  

satisfying ( ) ( )s Jτρλ λ =  for a given J  value. For one of 

( ) ( )( ),s ρλ λ  satisfying ( ) ( )s Jτρλ λ = , there exists the 

corresponding ( ) ( )( ), cs ρλ λ  satisfying 

( ) ( ) ( ) ( )* *c I I
s J s J Jττρ ρλ λ λ λ= − = −  in the metamerism of a 

given J  value. 

 
 
[PROPERTY 3] 

For / 2IJ J= , the relation of ( ){ } ( ){ }cρ ρλ λ=  is consistent, 
where { }  indicates a set. 
 
[LEMMA 1]  

Assume that ( ) ( ){ },s ρλ λ  indicates a set of ( ) ( )( ),s ρλ λ . 

Posit a random ensemble of pairs ( ) ( ){ },s ρλ λ . The centroid of 

( ) ( ) ( ) ( ){ } / 2cs sτ τρ ρλ λ λ λ+  is * / 2IJ .  

 

[Proof]  

Let the ensemble represent equally probable states, each state 

is characterized by a particular pair of ( )s λ  and ( )ρ λ . Divide all 

the allowed ( )ρ λ  realizations into pairs of ( )ρ λ  and ( )cρ λ  by 

choosing a ( )1ρ λ , computing its ( )1cρ λ , choosing another ( )2ρ λ  

that is not equal to either ( )1ρ λ  or ( )1cρ λ , and continuing in this 

way until exhausting all the realizations of ( )ρ λ . From 

PROPERTY 2, for a value of J  satisfying ( ) ( )s Jτρλ λ = , there 

exist the number of pairs corresponding to the number of metamers 

of J  (intra-pairs). For variations of J  in the min-max range, inter-

pairs exist in the symmetrical relation described in PROPERTY 1. 

For the inter-pairs, the exhausting process can be finished with 

complete pairs. 

Now consider a pair of realizations ( ) ( )( ),s ρλ λ  and 
( ) ( )( ), cs ρλ λ  both with the same realization ( )ρ λ . The following 

equation is valid for ( ) ( )cs τρλ λ . 
 

( ) ( ) ( ) ( ) ( )cs sτ ττρ ρ ρλ λ λ λ λ= − .                    (A.1) 

 

Compute the centroid of ( ) ( ) ( ) ( ){ } / 2cs sτ τρ ρλ λ λ λ+  by first 

averaging ( ) ( )s τρλ λ  and ( ) ( )cs τρλ λ  for the pair as follows: 

 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

*

/ 2

/ 2

/ 2 .

c

I

s s

s s s

J

τ τ

τ τ τ

ρ ρλ λ λ λ

ρ ρλ λ λ λ λ

+

+ −=

=

         (A.2) 

 
And then the average of the intra-pairs for a given value of J  is 
derived as * / 2IJ . The averaging all the intra-pair averages gives 

the inter-pair average ( )* / 2IJ=  for all possible J  which 

corresponds to the centroid. 
 

( ) ( ) ( ) ( ){ } */ 2 / 2 .c I
s sE Jτ τρ ρλ λ λ λ⎡ ⎤+ =⎢ ⎥⎣ ⎦

       (A.3) 

 
where 

E : expectation which calculates the centroid. 
 
[LEMMA 2] 

For / 2obj IJ J= ,  

( ) ( ) ( ) ( )( ){ } ( ) ( )1 / 2 .s s sE E Eτ ττ
ρ ρ ρλ λ λ λ λ λ⎡ ⎤⎡ ⎤ ⎡ ⎤−+ =⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

  

(A.4) 
 
Proof 
      ( ){ } ( ){ }1ρ ρλ λ= −  in PROPERTY 3 under the condition of the 
lemma derives the following equation. 
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( ) ( ) ( ) ( )( )1s sE Eτ τ
ρ λ ρλ λ λ⎡ ⎤⎡ ⎤ −= ⎢ ⎥⎣ ⎦ ⎣ ⎦

,                (A.5) 

 
and the lemma is proven. 
 
[Theorem 1]  

Posit a random ensemble of pairs of ( ) ( ){ },s ρλ λ  such that 
( ) / 2obj IJ Jτρ λ = =  and ( ) *I

s Jτλ = . Then the centroid of 
( ) ( )s τρλ λ  is as follows: 

 

( ) ( ) * /obj II
sE J J Jτρλ λ⎡ ⎤ =⎣ ⎦ .                                (A.6) 

 
[Proof]  

Using the LEMMAs 1 and 2, and the relation of 
/ 2obj IJ J= , the centroid is derived as follows: 

 

( ) ( ) * */ 2 /obj II I
sE J J J Jτρλ λ⎡ ⎤ = =⎣ ⎦ .                    (A.7) 

 
Theorem 2 describes the boundary conditions for the 

approximation in Theorem 3. 
 
 
[Theorem 2] 

For 0.0objJ = , the centroid of ( ) ( )s τρλ λ  is 0.0 , and for 

obj IJ J= , the centroid of ( ) ( )s τρλ λ  is *IJ , and for both cases, 

the centroid is described in the form of * /obj IIJ J J . 

 
Proof 
      In the case of 0.0objJ = , ( )ρ λ  is always 0.0  and the centroid 
of ( ) ( )s τρλ λ  becomes 0.0 . In the case of obj IJ J= , ( )ρ λ  is 
always 1.0  and the controid of ( ) ( )s τρλ λ  becomes *IJ . The 
both centroids satisfy the equation of * /obj IIJ J J . 
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