
Comparative Study of Search Strategies for the Direct Binary
Search Image Halftoning Algorithm
Sagar Bhatt and John Sabino, Rice University, Houston, TX; John Harlim, University of Maryland, College Park, MD; Joel Lepak,
University of Michigan, Ann Harbor, MI; Robert Ronkese, University of Delaware, Newark, DE; and Chai Wah Wu, IBM T.J. Watson
Research Center, Yorktown Heights, NY

Abstract
We propose strategies for reducing the operations required

by a high-quality halftoning algorithm, Direct Binary Search
(DBS) and compare the errors in the resulting halftones from the
proposed methods, standard DBS, dithering, and error diffusion.

Introduction
Halftoning is the process of approximating an image con-

taining a continuum of colors by an image containing a few col-
ors. Most modern digital printers rely on halftoning because they
cannot vary the intensity of their inks and use only a handful of
colors. A black-and-white printer, for example, must use only
black ink and white paper to faithfully recreate a grayscale image.
Any gray color we see in an image printed by a black-and-white
printer is an illusion. At an appropriate distance, the eye perceives
closely-spaced black and white blotches as a patch of gray. The
exact way in which the eye produces this gray is not completely
understood, but a blurring process is evident. A complete model
of the human visual system (HVS) is an open research problem
and must take many things into account: for example, how the eye
blurs together nearby pixels, the sensitivity of the eye to changes
in texture and luminescence, the attenuated response of the eye
to changes along diagonal directions, and how optical illusions
deceive the brain. Several models [4] have been proposed, but a
particularly effective and simple one is the Gaussian filter model.
The role of the HVS in the halftoning problem leads to the fol-
lowing mathematical formulation.

The Halftoning Problem Given a full color image I, find a
halftone image O that minimizes ‖G(O)−G(I)‖, where G(X) is
the perceived image when viewing X.

We represent an image as a matrix of pixel values. In the Gaussian
filter HVS model, G(·) is a two-dimensional convolution operator
with a Gaussian kernel. The norm depends on the setting, but
considering the image as a vector, the lp norm for p = 2,∞ is
commonly used.

A particularly restrictive constraint in designing a practical
halftoning algorithm is that the method must perform extremely
fast. This is especially true in high-speed, high-resolution print-
ers, as there could be more than a hundred million pixels on a
page. For these applications, it is desirable that the algorithm pro-
duces an acceptable halftone using kN operations, where N is the
number of pixels in the original image, and k is a small constant
(k � 10). Several extremely fast halftoning algorithms exist, but
their halftones is often unsatisfactory. We review a slower method
called Direct Binary Search (DBS) [1] and compare it with some
of the faster methods: dithering [2, 3] and error diffusion [5–7]

(a) (b)

(c) (d)

Figure 1. Results of halftoning a 512×512 pixel grayscale image (a) with:

(b) dithering, (c) error diffusion, and (d) Direct Binary Search. Cropped im-

ages shown. (Note: Your printer may employ a halftoning scheme to image

(a) so that it appears to have a finer resolution.)

(see Figure 1). While DBS is considered one of the best halfton-
ing algorithms, its computational cost is too high for practical
halftoning in an online environment. The purpose of this paper
is to study and compare search strategies of DBS that preserve
most of the quality of DBS halftones but with fewer operations.

Direct Binary Search
For simplicity, we present our formulation for grayscale

halftoning; a formulation for color images readily follows. We
shall represent grayscale intensities by numbers in the interval
[0,1], varying smoothly from white at 0 to black at 1. We define
an image as a finite two-dimensional array of grayscale intensi-
ties. We refer to entries in the array as pixels and each pixel has
a set of coordinates (i, j). In the rest of this paper, we denote I to
be a grayscale input image and O to be a black-and-white output
halftone.

Direct Binary Search is a computationally expensive algo-
rithm that requires several passes through an image before con-
verging to the final halftone. DBS proceeds by generating an
initial halftone image (possibly using dithering or another fast
method), and then performs a local improvement in the halftone
by swapping (switching the colors of nearby pixels) and toggling

(changing the parity of an individual pixel). An outline of a basic
version of the algorithm is shown in Algorithm 1.

Algorithm 1 Standard DBS
Generate an initial halftone O (typically by dithering)
Compute the error E := ‖ẽ‖F
repeat

for each pixel (i, j) do
Compute the change in E caused by
1. Swapping pixel O(i, j) with a neighbor
2. Toggling pixel O(i, j)
if either action decreases E then

Perform the better one
end if

end for
Update E

until ending criteria are met

For a more accurate approximation, a model of the printer
spot profile (the actual appearance of the ink dots on the printed
page) should also be taken into account. In this paper, we follow
[4] by assuming that the spot profile is small enough (compared
to the blurring effect of the HVS) to not affect the perception of
the image.

The error E is defined to be

E = ‖ẽ‖F =
√

∑
i, j

ẽ(i, j)2,

where the perceived error ẽ is defined by

ẽ(i, j) = G(O)(i, j)−G(I)(i, j) = p̃��(O− I)(i, j).

Here ‖ · ‖F is the Frobenius matrix norm with �� denoting two-
dimensional convolution and p̃, the HVS filter, is stored as a P×P
matrix. In our case studies, we use P = 11, with p̃(i+5, j +5) =
exp

(−(i2 + j2)/5
)
.

One can use different criteria for terminating DBS depending
on the circumstances. If runtime is not a concern, the algorithm
can iterate until no changes are made in an iteration. This would
be appropriate for situations such as screen generation for dither-
ing. Another criteria is that the algorithm can terminate when the
relative error reduction for an iteration falls below a tolerance. For
this paper, the standard DBS algorithm and each of the variants
we describe below employ this ending criteria with a tolerance of
0.01. Figure 1 shows a result of implementing DBS using this
model.

Throughout the paper, processing a pixel should be inter-
preted as checking for an acceptable swap or toggle and perform-
ing the action if one is found. We say that a trial has been per-
formed each time that the potential error change of a swap or tog-
gle has been evaluated. In each trial, DBS evaluates the change
in error ∆E for each possible swap or toggle. As described in [1],
∆E can be computed using a few operations in terms of

p̃�� ẽ and p̃�� p̃, (1)

When a swap or toggle occurs, the (2P−1)× (2P−1) com-
ponents of p̃ �� ẽ centered at each altered pixel are updated. No-
tice that a swap costs twice as much as a toggle since the former

requires updating twice as many components as the latter. Updat-
ing these components is much more expensive to perform than a
trial, especially for large P. For this reason, we concentrate pri-
marily on reducing the number of changes (swaps or toggles) a
DBS algorithm needs to make to the initial halftone. We do this
by judiciously choosing the set of pixels to consider for trials,
swaps and toggles.

New Strategies for Implementing DBS
We will describe now several variations of DBS. Hereafter,

we call the DBS reviewed earlier as the standard DBS. We first
discuss several strategies for sorting the pixels to give priority to
regions of the halftone with higher error. We also consider only
accepting swaps or toggles that reduce the error at least as much
as a fixed percentage of the mean error reduction of previously ac-
cepted changes. A final approach is to refine the set of processed
pixels based on the changes accepted, attempting to isolate the
high-error regions of the halftone.

Sorting
Pixels are processed in an arbitrary order in standard DBS.

We believe that processing high-error pixels first tends to give a
more rapid error reduction. In fact, after sorting, just one iteration
of DBS is needed to reach a satisfactory overall error level.

For simplicity of notation we assume that we are sorting en-
tries (i, j) based on |ẽ(i, j)|. In actual implementation, however,
the sorting is based on components of p̃ � � ẽ (see [1]). We find
no substantial difference between using these two quantities as a
sorting criterion. Unfortunately, sorting costs O(NlogN), where
N is the number of pixels. To reduce this cost, we propose the
following.

Local Sort
Errors are perceived locally, i.e. p̃ has a finite extent, so it

is not essential to sort the entire image to find problem pixels in
the initial halftone. The image can be broken into constant-size
blocks and each block sorted separately without significant degra-
dation of performance. An outline of this revised DBS algorithm
is shown in Algorithm 2. Tests on sample images using a block
size of only 4×4 have performed nearly as well as globally sort-
ing the pixel locations. Note that the sorting cost now becomes
O(N).

Algorithm 2 Local Sort DBS
Split the image into b×b size blocks
Sort each block based on |ẽ(i, j)|
repeat

for r = 1 . . .b2 do
for each block do

Process the pixel with the rth highest error
end for

end for
until ending criteria are met

Regular Spacing
This method is a very inexpensive approximation to Local

Sort. Instead of sorting each of the blocks, we only sort one of

them and assign this order to all the other blocks. The result-
ing effect is that pixels processed consecutively are “spaced out”
instead of being contiguous. Hence, this method avoids making
many consecutive changes in small neighborhoods.

Threshold Refinement
Instead of giving higher priority to pixels at which the error

is higher, another strategy is to emphasize the pixels where the
most improvement can be made. In threshold refinement, a swap
is only made if it reduces the error at least as much as some frac-
tion of the average error reduction of the swaps accepted so far
in that pass through the image. Toggles are performed without
regard to the threshold because there tend to be far fewer toggles
than swaps, toggles are half as expensive as swaps, and a toggle
may be necessary to bring the average gray level of the halftone
in a given region into agreement with the original image. The
primary advantage of threshold refinement is that the expensive
updating procedure for p̃�� ẽ is restricted to the pixels that give a
substantial reduction in error. To reduce the cost of averaging, we
kept a running average in our implementations.

Algorithm 3 Threshold Refinement DBS

Input: Threshold weight β (A typical value is β = 1/2.)
∆E ← 0 (The bar denotes average.)
for each processed pixel do

if a toggle reduces the error then
Perform the toggle

else
if the best trial swap gives ∆E < β ∆E then

Perform the swap
Update ∆E

end if
end if

end for

Search Set Refinement
One may also attempt to only process regions where changes

have been made previously, the idea being that these regions tend
to have higher error and are concentrated near the edges. Given
an initial set of pixels, Search Set Refinement (SSR) expands and
contracts the set according to the swaps and toggles accepted.
When a change to a pixel is made, the pixel is kept in the set and
its neighbors are added. Otherwise, the pixel is removed from the
set. This technique is outlined in Algorithm 4. In our implemen-
tations, we refer to the size of a neighborhood by its radius, i.e.,
the maximum of the vertical and horizontal distances a pixel in
the neighborhood is from the center pixel.

Results
Here, we compare the performance of all proposed algo-

rithms described in the previous section. We test each algorithm
on 150 images with sizes ranging from 100,000 pixels to 10 mil-
lion pixels. The implementations are:

• Standard DBS with neighborhoods of size 3×3 (i.e. radius
1).

• Local Sort with 4×4 blocks.
• Regular Spacing with 4×4 blocks.

Algorithm 4 Search Set Refinement DBS
Start with an initial set S of pixels (typically a sparse set of
uniformly distributed pixels)
repeat

for each pixel in S do
Process pixel
if pixel was changed then

Add its neighborhood to S
else

Remove pixel from S
end if

end for
until ending criteria are met

• Search Set Refinement (SSR) with radius one and an initial
set of uniformly distributed pixels chosen by selecting one
pixel from each 4×4 block.

• Floyd–Steinberg error diffusion.

All variations of standard DBS are implemented with Threshold
Refinement using β = 0.5. SSR with radius zero is also applied
in both Local Sort and Regular Spacing (with the initial search set
being the entire image).

The accuracy of each algorithm is measured by

Relative Error =
Error - Error of standard DBS

Error of standard DBS
.

Halftones with relative errors up to 30% tend to be visually indis-
tinguishable from halftones produced by standard DBS. Figure 2
plots the relative error as a function of the image size. Our results
show that Local Sort produces the least error, with an average
of 21% relative error. Notice that the average relative error of
SSR, 41%, is about the same as the average relative error of er-
ror diffusion, 44%. However, error diffusion has a large variance
of relative error compared to our proposed schemes. This is not
surprising since our schemes are based on DBS, which minimizes
the perceived error, whereas error diffusion does not. See Figure 5
for examples of halftone images produced by Local Sort, Regular
Spacing, and Search Set Refinement with radius one.

The efficiency of each proposed scheme is also compared to
the standard DBS algorithm. As mentioned before, the main cost
is updating p̃ � � ẽ, which costs twice as much for a swap than
for a toggle. The total computational cost is thus on the order of
twice the number of swaps plus the number of toggles. Figure 3
shows the ratio of this quantity to the total number of pixels in
an image as a function of the image size. This ratio represents the
fraction of altered pixels in an image. The standard DBS alters ap-
proximately 40% of the pixels in each image, while our proposed
schemes altered only about 10% of the pixels. In Figure 4, the to-
tal number of trials of our proposed schemes is roughly less than
5 per pixel, about four times less than that of the standard DBS,
roughly 20 per pixel. These results indicate that after the initial-
ization of p̃��ẽ, the number of operations in processing the pixels
in these schemes is about 25% of the corresponding operations in
standard DBS.

Conclusions and future work
We have presented several methods to reduce the number of

operations in the DBS algorithm while preserving much of the

Figure 2. Relative error with respect to standard DBS as a function of image

size.

Figure 3. Fraction of altered pixels per image as a function of image size.

Figure 4. Trials per pixel as a function of image size.

(a) (b) (c)

Figure 5. Results of halftoning a grayscale image (Figure 1(a)) with the

proposed schemes: (a) Local Sort, (b) Regular Spacing, and (c) SSR with

radius one. In all of these schemes, Threshold Refinement is applied with

β = 0.5. SSR with radius zero is also applied in schemes (a) and (b).

quality of its halftones.
Future work will include more extensive testing of the meth-

ods, including optimization of algorithm parameters and incorpo-
rating techniques for reducing the number operations per trial as
described in [1, 3, 8]. The goal is to design halftoning algorithms
with halftone quality close to DBS and running times comparable
to error diffusion.

Acknowledgment
This project is part of the Mathematical Modeling in Indus-

try IX Workshop for Graduate Students organized by the Institute
for Mathematics and Its Applications (IMA) at the University of
Minnesota, August 1-10, 2005. The authors would like to thank
the IMA for its generous funding, excellent computing facilities,
stimulating environment and supportive personnel throughout the
workshop.

References
[1] Jan P. Allebach. “DBS: retrospective and future directions”,

Proc. SPIE, vol. 4300, pp. 358–376, 2001.
[2] Kevin E. Spaulding, Rodney L. Miller, and Jay Schildkraut.

“Methods for generating blue-noise dither matrices for digital
halftoning”, Electronic Imaging, 6 (2), pp. 208-230, 1997.

[3] C. W. Wu, G. Thompson, and M. Stanich, “A unified frame-
work for digital halftoning and dither mask construction:
variations on a theme and implementation issues,” NIP 19:
IS&T’s International Conference on Digital Printing Tech-
nologies, pp. 793-796, 2003.

[4] Sang Ho Kim and Jan P. Allebach. “Impact of HVS Models
on Model-based Halftoning”, Proc. SPIE, vol. 4300, pp. 422-
437, 2001.

[5] Robert W. Floyd and Louis Steinberg. An Adaptive Algorithm
for Spatial Grayscale. Proceedings of the Society for Infor-
mation Display 17 (2) pp. 75-77, 1976.

[6] J.F. Jarvis, C.N. Judice and W.H. Ninke, A Survey of Tech-
niques for the Display of Continuous Tone Pictures on Bi-
level Displays. Computer Graphics and Image Processing 5
pp. 13-40, 1976.

[7] P. Stucki, MECCA - A Multiple Error Correcting Computa-
tion Algorithm for Bi-level Image Hard Copy Reproduction.
Research report RZ1060, IBM Research Laboratory, Zurich,
Switzerland, 1981.

[8] C. W. Wu, M. Stanich, H. Li, Y. Qiao and L. Ernst Fast Error
Diffusion and Digital Halftoning Algorithms Using Look-Up
Tables, NIP22: IS& T’s International Conference on Digital
Printing Technologies, 2006.

Author Biography
C. W. Wu received his B. A. in Cognitive Science from Lehigh

University, his M. A. in Mathematics and Ph. D. in Electrical En-
gineering from the University of California, Berkeley. He is cur-
rently a Research Staff Member at IBM T. J. Watson Research
Center. He has authored over 100 papers, was issued over 40
US Patents and is a Fellow of the IEEE. His research interests in-
clude digital halftoning, multimedia security and synchronization
in networks of nonlinear dynamical systems.

