
Fast error diffusion and digital halftoning algorithms using look-
up tables
Chai Wah Wu; IBM T. J. Watson Research Center; Yorktown Heights, NY, Mikel Stanich, Hong Li, Yue Qiao, Larry Ernst; IBM Printing
Systems Division; Boulder, CO

Abstract
Recently, a fast error diffusion halftoning algorithm using

look-up tables (LUT) was proposed to speed up the multiplication
of error filter coefficients. In this letter, we propose another LUT-
based error diffusion halftoning algorithm which is more flexible
in terms of the size of the LUT that can be used and thus allows
for a more optimal tradeoff between halftone quality, processing
speed, hardware complexity and parallelizability. Furthermore,
the aggregate error in the proposed algorithm can be computed
with different bitdepths for the different errors. As an example, we
present a variant of the Floyd-Steinberg error diffusion algorithm
which consists of two 256K bytes LUTs and the calculation of the
modified input requires 1 addition and 2 table look-up operations
per pixel processed.

Introduction
Error diffusion [1] is a popular technique for digital halfton-

ing, especially when high fidelity and faithful reproduction of
high frequency features such as edges are required. Error dif-
fusion requires several multiplications and additions per pixel
processed. This is considerably slower than halftoning methods
of the point operation type, such as the blue noise mask [2], which
require one comparison per pixel processed and memory storage
for the dither mask.

In Ref. [3] a fast error diffusion algorithm is proposed by
replacing multiplication operations and quantization operations
with look-up tables (LUT). In this letter, we propose another fast
LUT-based error diffusion algorithm which offers more flexibility
in the size of the LUTs. This allows for a more optimal trade-
off between speed, halftone image quality, hardware complexity
and parallelizability. Furthermore, the proposed algorithm allows
the precision in which each error term is calculated to be var-
ied, allowing yet more flexibility in the design. The ultimate
goal is to create neighborhood operation halftoning algorithms
with speeds approaching those of point operation halftoning al-
gorithms. We illustrate this by showing an implementation of
the Floyd-Steinberg error diffusion algorithm where the compu-
tation of the modified input uses 2 LUTs and 1 addition per pixel
processed.

Error diffusion halftoning
The error diffusion algorithm can be described by the fol-

lowing steps. For each pixel, the current pixel value is quantized
to produce the output halftone pixel value. The error at the cur-
rent pixel, which is the difference between the pixel value and
the output value is then distributed to neighboring pixels. More
precisely, denoting the pixel value, the output value and the error
value of a pixel p as v(p), o(p) and e(p) respectively, we compute

at each pixel p:

1. o(p) = Q(v(p))
2. e(p) = v(p)−o(p)
3. v(q)← v(q)+ w(p,q)e(p) for each pixel q in the neighbor-

hood of p

where Q is the quantization function. The weights w(·, ·) are gen-
erally nonnegative1 and sum to one, i.e ∑q w(p,q) = 1 for each p.
The weights are also referred to as the error diffusion kernel. Fur-
thermore, in general the weights are shift-invariant, i.e. w(p,q)
depends only on the difference between p and q, and we can re-
place the notation w(p,q)e(p) with w(i)e(p) where q− p = i ∈ N
and N is a neighborhood of the origin. Many sets of weights have
been proposed [5, 6], each with different characteristics such as
simple hardware implementation, less anisotropic artifacts, etc.

1D LUT-based error diffusion algorithm
In Ref. [3] a fast implementation of error diffusion is pro-

posed where the multiplications with the weights (step 3 above)
are replaced by a one-dimensional LUT. In particular, at each
pixel, the error e(p) is multiplied with several weights w(q− p)
and thus a LUT is constructed which is indexed by e(p) and pro-
duces the set of values w(i)e(p) for i ∈ N as output.

Let us assume that each error value e(p) is represented as a
k-bit number2 and its weighted value w(i)e(p) is represented as an
m-bit number. Furthermore, the number of elements in the kernel
is denoted by n, i.e. |N| = n. Then the LUT is indexed by k bits
and the size of the LUT is 2knm bits.

For instance, consider the Jarvis error diffusion algorithm [7]
where n = 13 and the kernel is given by

1
48

× 7 5
3 5 7 5 3
1 3 5 3 1

Here ‘×’ denotes the current pixel position. As an exam-
ple, if e(p) and w(i)e(p) are represented by 8 bits, (k = m = 8),
then the LUT for the Jarvis algorithm is of size 256×13×8 bits
or 3328 bytes. The number of operations needed per processed
pixel p to propagate the error i.e. implement v(q)← v(q)+w(q−
p)e(p) is 1 table look-up and n additions.

Remark The method of replacing the multiplication of a sin-
gle number with multiple fixed weights with a single LUT is also
used to speed up convolution [8].

1See [4] for an algorithm where some of the weights are negative.
2Since the errors e(p) can be negative and larger in magnitude than

the pixel values v(p), we require that the values of e(p) and w(i)e(p) are
properly scaled and/or translated to fit into a k-bit (and m-bit resp.) fixed
point number representation which can be signed or unsigned.

We see that the size of the LUT is mainly dictated by the
bitdepths of the various numbers and the number of weights in
the kernel. The first 2 steps, i.e. the calculation of o(p) and e(p),
can also be replaced by two 1-D LUTs, but we will not focus on
this part here as the main speed improvement is due to speeding
up the multiplication operations. In the next section we propose
a LUT-based error diffusion algorithm for which there is more
flexibility in choosing the size of the LUT.

A novel LUT-based error diffusion
An alternative but equivalent way to describe error diffusion

is the following. At each pixel p, the modified input M(p) is
computed by adding the pixel value to weighted errors from pix-
els in the neighborhood of the current pixel. The output value is
computed by quantizing the modified input value and the error is
computed as the difference between the output value and the mod-
ified input. More precisely, the algorithm performs the following
steps:

1. M(p) = v(p)+∑i∈N w(i)e(i+ p)
2. o(p) = Q(M(p))
3. e(p) = M(p)−o(p)

For example, the Shiau-Fan error diffusion algorithm [9] has n = 5
elements in the kernel:

1
16

4 2 1 1
8 ×

In contrast to the interpretation in the previous section where
errors are propagated to future pixels, here the modified error is
computed by adding errors from previous pixels. Therefore the
kernel in this interpretation is shown rotated 180◦ from the way
error diffusion kernels are usually given in the literature. In the
proposed LUT-based error diffusion algorithm, we replace the
computation of ∑i∈N w(i)e(i + p) with one or more LUTs. As-
sume that e(i + p) is represented using k bits. Then the input of
the LUT are the n error values e(i + p) and consist of nk bits. In
particular, consider the following diagram of the nk bits corre-
sponding to the n error values (Fig. 1). The output of the LUT is
the m-bit number ∑i∈N w(i)e(i + p). The value of M(p) is equal
to the sum of the output of the LUT and the current input pixel.3

If this LUT of size 2nkm bits can fit into memory, then we ob-
tain an error diffusion algorithm where the calculation of M(p)
takes 1 table look-up and 1 addition. However, in current com-
puter architectures, this LUT is too large to fit in memory, espe-
cially fast memory such as cache memory closest to the CPU. To
illustrate, for Jarvis error diffusion with 8-bit precision for the er-
rors, k = m = 8, and n = 13 would result in a LUT of 2104 bytes
or 16 tebi-exbibytes. Therefore we split up this LUT into sev-
eral LUTs, and sum up the outputs from these LUTs to obtain
∑i∈N w(i)e(i+ p). This process is valid because of the linearity of
the computation.

To create the various LUTs, the bits in Figure 1 are parti-
tioned into several blocks as shown in Fig. 2. Even though the
blocks in Fig. 2 are shown as connected shapes, this is not nec-
essary. Each of these blocks corresponds to a linear combination
of subsets of bits of some error values e(i + p). Thus each LUT

3Similar to before, the input and the output of the LUT are expressed
in appropriate number formats.

1 2 3 n

bits

k

Error values

least
significant

significant
most

1

Figure 1. Schematic diagram of the totality of bits in n error values.

takes the bits in each block as input and output the correspond-
ing linear combination. By linearity, we can add the outputs of
these LUTs and obtain the full linear combination. Since we are
adding outputs from LUTs, each of which can cover a different
range, the resulting ∑i∈N w(i)e(i + p) can have higher precision
than each individual output. Even though Figure 2a illustrates
a general partition with arbitrary shapes, certain partitions result
in simpler implementations. For instance, consider the partition
of the nk bits shown in Fig. 2b. Each LUT computes the linear
combination of a bitplane (or several adjacent bitplanes) of all the
error values. It is easy to see that the outputs of the LUTs differ
only by a shift in the bits, i.e. a factor of 2v. Thus we can replace
the various LUTs by a single LUT and shift the bits of the out-
put appropriately depending on which bitplanes are used as input.
As in [3], use of general weights w(i) does not increase hardware
complexity versus special weights such as 1

2 or 1
4 .

n

k

1 2 3

bits

Error values

least
significant

significant
most

1
n1

k

2 3

bits

Error values

least
significant

significant
most

1

(a) (b)
Figure 2. Schematic diagram of partitions of nk-bits of n error values. (a)

general partition. (b) bitplane partition.

As an example, consider the following implementation of
LUT-based Jarvis error diffusion. In this case n = 13 and let us
assume that k = m = 8. We partition as in Fig. 2b into 8 LUTs
which is implemented in a single LUT of size 213×8 bits = 8192
bytes. Computation of M(p) takes 8 look-up operations, 7 shift
operations and 8 additions operation. If we use 8 separate LUTs
occupying a total of 64K bytes, then the 8 table look-up opera-
tions can be done in parallel and the time to compute M(p) is 1
table look-up operation and 8 additions. This is compared with
the algorithm in [3] which requires a LUT of 3328 bytes, 1 ta-
ble look-up operation and 13 additions per pixel processed. One
feature of the proposed implementation is the flexibility in the
choice of size of the LUT which depends on how the nk bits are
partitioned. For instance, by partitioning Fig. 1 into 4 bit planes,
each containing two adjacent bits we get 4 LUT tables with 22n

entries each. Again these 4 LUT tables differ from each other by

a shift of the bits and they can be replaced by a single LUT. As
in [3], the calculation of o(p) and e(p) can be replaced with 1-D
LUTs.

Another feature of this implementation is that the calculation
bit depth of each error value can be variable. The calculation bit
depth is defined as the number of bits used in the computation.
This is different (and possibly smaller) than the actual number of
bits used to the store the error value in memory. Furthermore,
whereas the actual number of bits used for a single error value
is the same, its calculation bit depth can change depending on
the corresponding weight that it is multiplied with. For example,
for small weights the calculation bit depth can be smaller than
the calculation bitdepth for large weights. On the vertical axis of
Figs. 1 and 2, k is in fact the calculation bitdepth of the error
values. In the case of variable calculation bitdepth, the set of bits
of the errors is shown schematically in Fig. 3.

1 2 3 n

bits

k

Error values

least
significant

significant
most

1

Figure 3. A different set for the totality of bits. Note that the calculation

bitdepth of the different error values are different.

Consider the following implementation of the Shiau-Fan er-
ror diffusion algorithm. Assume that the calculation bitdepth of
an error value is given in parentheses next to the corresponding
weight in the following diagram:

4
16 (8) 2

16 (6) 1
16 (4) 1

16 (4)
8

16 (8) ×

It seems reasonable that the calculation bitdepth should in-
crease with the magnitude of the weight. We construct two 32K
bytes LUTs with each LUT computing using half the bitdepth as-
signed to each error value. Then the calculation of M(p) requires
2 table look-up and 2 addition operations. The output from this
implementation (Fig. 5) is qualitatively the same as the original
Shiau-Fan algorithm (Fig. 4).

In another example, we use the following calculation bit-
depth distribution for the weights:

4
16 (4) 2

16 (3) 1
16 (2) 1

16 (2)
8

16 (5) ×

We create a single 64K bytes LUT and calculate M(p) us-
ing 1 table look-up operation and 1 addition. The output of this
halftoning algorithm is shown in Fig. 6. The halftone image suf-
fers some quality loss and has increased contrast.

So far, the LUT table is used to compute ∑i∈N w(i)e(i + p)
and this is added to the input pixel v(p) to obtain the modified
input M(p). Another variant of this algorithm is to have v(p) as

Figure 4. Shiau-Fan error diffusion.

Figure 5. Shiau-Fan error diffusion using two LUTs.

Figure 6. Shiau-Fan error diffusion using a single LUT.

part of the input to the LUT and have the LUT compute M(p) di-
rectly. This adds another level of flexibility to the tradeoff equa-
tion. For example, consider Floyd-Steinberg error diffusion [1]
with weights and calculation bitdepth distribution:

1
16 (6) 5

16 (8) 3
16 (6)

7
16 (8) × (8)

The number in parentheses next to ‘×’ denotes the calcula-
tion bitdepth of the current pixel value v(p). Using two LUTs
to split up the bits, we obtain two 256K bytes LUTs whose out-
puts are summed up to obtain M(p). If the LUTs are accessed
in parallel, the time it takes to compute M(p) is 1 table look-up
operation and 1 addition operation. The halftone output is shown
in Fig. 7b which is qualitatively the same as the original Floyd-
Steinberg algorithm (Fig. 7a). The speed of this implementation
approaches that of the blue noise mask dithering algorithm [2],
which for large dither masks has similar memory requirements.
This is significant since dithering algorithms are point operation
algorithms and thus are inferior to error diffusion in terms of sharp
details rendition.

(a)

(b)
Figure 7. Floyd-Steinberg error diffusion. (a) Original algorithm. (b) Imple-

mented using two LUTs and only 1 addition operation is needed to compute

the modified input M(p).

Conclusions
We have presented a novel LUT-based error diffusion algo-

rithm which allows for a flexible tradeoff between output image
quality, hardware complexity and processing speed. In particular,
quality can be traded off by varying the calculation bitdepth of the
error values. Furthermore, the multiple LUTs used are amenable
to parallel implementation. The above technique can be used in
various variations of the error diffusion algorithms such as algo-
rithms where the kernel depends on the input pixel value [4]. It
can also be useful in algorithms where the computation of a linear
combination of values needs to be sped up. This include halfton-
ing algorithms such as Direct Binary Search [10] and other types
of iterative halftoning algorithms [11].

One implementation issue is the repacking of the bits of
the pixel and error values to form an index for the LUT. This is
best incorporated into the hardware design as it requires little or
no computation at all. An example of hardware implementation
where bits are repacked to form an index to a LUT can be found in
[12] where it is used to enable print quality enhancement of binary
text data. With such hardware designs and fast enough memory,
we can expect error diffusion to be performed at speeds compara-
ble to point operation halftoning algorithms such as dither mask
screening.

References
[1] R. W. Floyd and L. Steinberg, “An adaptive algorithm for

spatial grayscale,” Proceedings of the Society for Informa-
tion Display, vol. 17, no. 2, pp. 75–77, 1976.

[2] M. Yao and K. J. Parker, “Modified approach to the con-
struction of the blue noise mask,” Journal of Electronic
Imaging, vol. 3, no. 1, pp. 92–97, 1994.

[3] H. R. Kang, “Fast error diffusion,” in Proceedings of SPIE,
vol. 4663, pp. 302–309, 2002.

[4] C. P. Tresser and C. W. Wu, “Target patterns controlled error
management.” US Patent 6006011, 1999.

[5] R. Ulichney, Digital Halftoning. Cambridge, MA: MIT
Press, 1987.

[6] H. R. Kang, Digital Color Halftoning. SPIE Press, 1999.
[7] J. Jarvis, C. Judice, and W. Ninke, “A survey of techniques

for the display of continuous tone pictures on bilevel dis-
plays,” Computer Graphics and image Processing, vol. 5,
pp. 13–40, 1976.

[8] G. Wolberg and H. Massalin, “Fast convolution with packed
lookup tables,” in Graphics Gems IV, pp. 447–464, Acad-
emic Press, 1994.

[9] J. Shiau and Z. Fan, “A set of easily implementable coeffi-
cients with reduced worm artifacts,” in Proceedings of SPIE,
vol. 2658, pp. 222–225, 1996.

[10] J. P. Allebach, “DBS: retrospective and future directions,” in
Proceedings of SPIE, vol. 4300, pp. 358–376, 2001.

[11] C. W. Wu, G. Thompson, and M. Stanich, “A unified frame-
work for digital halftoning and dither mask construction:
variations on a theme and implementation issues,” in Pro-
ceedings IS&T’s NIP19: International Conference on Digi-
tal Printing Technologies, pp. 793–796, 2003.

[12] M. J. Stanich, “Print-quality enhancement in electrophoto-
graphic printers,” IBM Journal of Research and Develop-
ment, vol. 41, no. 6, pp. 669–678, 1997.

