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Abstract
The paper describes a nonlinear approach for constructing

color conversions based on radial basis functions (RBFs). The
RBF is embedded in a two-layer structure that uses a linear trans-
fer function for the output units and a nonlinear transfer function
for the hidden units. RBFs are popular for interpolating scattered
data as the associated system of linear equations is guaranteed
to be invertible under very mild conditions on the locations of
the data points. In particular, RBFs do not require that the data
lie on any sort of regular grid. The purpose of using RBFs in
color conversion is to improve the accuracy, efficiency, and per-
formance of optimization and interpolation for high-dimensional
non-linear scattering data. This approach is practical with color
conversions for color devices, which have nonlinear behavior, for
example, color printers. Preliminary results have shown that the
RBF color mapping technique can be very effective in reducing
the maximum errors of color conversions. In one experiment we
observed that the maximum error was reduced by half.

Gamut Mapping Algorithms

When the input color space is bigger than the gamut of the
output color device, then gamut-mapping algorithms are applied.
The current gamut mapping process transforms a point in the
source gamut to a realizable color inside the gamut of the output
device. The form of this transformation can dramatically impact
the quality of the reproduced images, especially print images. As
such, care needs to be used in the design and implementation of
gamut mapping transformations.

The current gamut-mapping algorithms map all out-of-
gamut points directly to the destination gamut. The most typi-
cal gamut mappings are clipping algorithms: to clip of out-of-
gamut points to the destination gamut boundary, and scaling al-
gorithms: to scale the input color gamut to output color gamut,
i.e., some out-of-gamut points are mapped to inside of the destina-
tion gamut, some out-of-gamut points are mapped to the boundary
of the destination gamut. However, the direction of the mapping
is still an active area of research. The large variability in past
color gamut mapping studies suggests that ideal gamut mapping
depends on image content, preservation of perceived hue through-
out color space, and the extent of the gamut mismatch in various
regions of color space. Image dependent and regional-dependent
gamut mappings are preferred. However, image dependent gamut
mapping algorithms suffer a performance penalty.

Visual tolerance for color difference
The color difference models are built based on visual toler-

ance for color difference, which is visually approved match with a

tolerance of observer acceptability for a pair of colors. There are
a few CIE perceptual based color difference evaluation equations.
The most recent one is CIEDE2000, which calculates the percep-
tual difference by weighted lightness difference, chroma differ-
ence, hue difference, and the interaction between the chroma and
the hue difference [6]. However, the CIEDE2000 is developed for
the small-size industry color difference, it does not work well for
the big-size color difference. The empirical weighted color dif-
ference of lightness, chroma, and hue is often used for this case,
with higher weighting factors for hue and lightness difference,
and lower weighting factor for chroma difference.

Current Practice
The current technique of modeling the nonlinear behavior of

toner/ink mixture is to divide the color space evenly into fine re-
gions, and linearly interpolate colors within each region. In most
cases, the printer profile is a Lookup table from a device inde-
pendent color space, i.e., CIELAB color space to the printer color
space C (cyan), M (magenta), Y (yellow), and K (black). To do
so, the device color space cyan, magenta, and yellow are each di-
vided into N linear pieces separately. The color combination of
each node point of cyan, magenta and yellow Pi(c,m,y) is printed
and measured with the CIELAB value Vi(L,a,b) where Pi is the
device color of the ith combination of cyan, magenta, and yellow,
0 < i < N and Vi is the measured CIELAB value of Pi.

Tetrahedral linear interpolation is then applied to a cube
which is divided into 5 or 6 tetrahedrons [3]. The drawbacks of
this approach are (1) it has to generate a large data set that evenly
spans the gamut of the device (2) data which are not on the grid
of evenly spaced data can not be used, and (3) the local linear
assumption is only an approximate model of the data, it may not
apply to some of the region which is highly nonlinear.

We observe that mappings between the device dependent and
independent representations are not invertible. In particular, the
color conversion from the device-dependent color space to device-
independent color is neither injective nor surjective. While clearly
every color in the device-dependent color space can be mapped
to a color in the device-independent color space, the range of
the device-independent color space (gamut) is bigger than the
range of the device-dependent color space. Because the mapping
from device-dependent color space to device-independent color
space is neither injective nor surjective, the color conversion from
device-independent color space to device-dependent color space
thus can be only achieved by approximation. For most of the color
printers, the device color space cyan, magenta, yellow and black
toners does not linearly correlate to the perceptual color space,
e.g., CIELAB and no trivial equation can describe it.



The Data Fitting Problem
In general we seek either a mapping from the device de-

pendent color (CMYK) to the device independent representation
(CIELAB), or, a mapping from the device independent represen-
tation to the device dependent representation.

If we let xi represent the color values in one system and let yi
represent the associated color maps in another system we propose
to construct the mapping

yi = f (xi)

over a set of available known input output pairs. While we seek
to make the error on the training data small, the actual measure
of success of the method is how it interpolates values that are not
used in the training problem. The tetrahedral method is based on a
linear interpolation between known values while the RBF method
described below employs a nonlinear fit.

The Radial Basis Function Technique
The RBF is a very popular interpolation algorithm for the

scatter data as the associated system of linear equations is guaran-
teed to be invertible under very mild conditions on the locations
of the data points. Originally introduced as an approximating tool
in [1], the RBF is embedded in a two-layer structure that uses a
linear transfer function for the output units and a nonlinear trans-
fer function for the hidden units. The form of a RBF function
representation is described

f (x) = Ax+a0 +
N

∑
i=1

wkφ(‖x−ck‖) (1)

Here the term Ax represents the linear component of the mapping
and the offset a0 allows for the mean of the data to be non-zero.
The nonlinear portion of the map is represented by the superpo-
sition of vectors weighted by the nonlinear function φ . It is also
common practice to include additional algebraic nonlinearities but
we have not done so here.

The radial basis functions themselves are generally selected
so that they satisfy an invertibility condition on the square inter-
polation problem for the weights[8]. In this study we have found
that the multiquadric function

φ(r) =
√

r2 +α2

to be the most accurate for gamut mapping. Other popular func-
tions include the Gaussian RBF

φ(r) = exp(−r2/α2)

and the thin plate spline

φ(r) = r2 lnr

These functions have the property that expansions such as those
given by Equation (1) represent continuous functions over com-
pact domains. The location of these functions is stipulated by
the vector centers {ck} generally scattered over the domain in a
manner that reflects the distribution of the data. In this paper we
achieve this through a clustering algorithm.

Scattering the functions
The algorithm we use for determining centers in this paper

is based on clustering and is similar to that employed by [7]. The
domain of the data is clustered into Voronoi regions using a global
competitive learning algorithm commonly referred to as the LBG
Clustering Algorithm [5]. Specifically, a Voronoi region Vi asso-
ciated with the center ci is the set of points for which ci is the
nearest center vector.1

The algorithm proceeds as follows:

• Select an initial number of centers N randomly from the
data.

• For each center compute the Voronoi set, i.e., all points in
the data closest to this center.

• Now update the centers as the mean of the points in the
Voronoi set.

• Repeat.

The purpose of data clustering is to identify the location
where basis functions should be placed in the model. There are
many ways to do this and we have just presented one from the
literature.

Refining the model
This clustering algorithm described above can be effectively

combined with the Orthogonal Least Squares (OLS) method for
center selections originally proposed in [2]. The OLS method
serves to identify which of the N centers are most useful in the
RBF model and indicates which centers may be deleted from the
model and at what expense to accuracy.

We will sketch the theory behind this refinement technique
in a general setting. The computation of the weight parameters in
Equation (1) is an over-determined least squares problem. Thus,
we seek a solution to the set of inconsistent equations

y = Φw

where each column of the matrix Φ is associated with a single
center and y does not actually reside in the column space of Φ.
The question then becomes which of the columns of Φ is most
useful for solving the problem? In general, one associates a qual-
ity function to a center. In this case that means measuring the
value of a column φi of Φ in solving the least squares problem.
One measure is the cosine of angle between y and each column of
Φ,

vi =
ytφi

‖y‖‖φi‖
In other words the best center is the one for which vi is as large
as possible, i.e., the angle is as small as possible. This solution
is indexed by i∗ meaning φi∗ is the solution to the optimization
problem.

Once the best column (and hence RBF center) of Φ has been
determined, the next best center can be computer by projecting
the remaining columns along φi∗ . This approach may be iterated
to obtain a reduced subset of centers that has acceptable modeling
accuracy.

1Sometimes this is referred to as a first order Voronoi region since only
one center is used in its definition.



Non-uniform data fitting

Unlike the traditional way of applying one function to all
clusters, functions are optimized and selected for these clustered
color data. For the neutral color area, the visual tolerance of these
color differences is very small, L1 norm is preferred because it’s
least sensitive to the outliers. For the saturated color regions, L∞
norm is used because human visual system is insensitive to the
color differences. So we want all these regions perform equally
good. When the L∞ norm is applied, the problem is mathemati-
cally equivalent to a problem in linear programming. Here a du-
ality theorem can then be applied to solve the problem. In this
proceedings paper we restrict our results to the L2 norm case only.

In summary,The RBF approach includes clustering color
data, determining the cluster centers, and optimizing the num-
ber of centers; optimizing functions for each center; optimizing
the norm selection with L-p norm for each center. The purpose
of using RBF in color conversion is to improve the accuracy, ef-
ficiency, and performance of optimization and interpolation for
high-dimensional non-linear scattering data. The approach is
practical with color conversions for color devices, which have
nonlinear behavior, for example, color printers.

Numerical Experiment
We implemented the RBF approach using a variety of basis

functions and the measured the approximation error using an L2
norm. For this purpose a set of 625 CMYK patches were gener-
ated from a 5x5x5x5 4-dimensional lattice and printed. CIELAB
values were also measured for each of the 625 patches. The data
were clustered with N = 120 centers. Initial centers were chosen
to span the whole color space. Several different RBF functions
were used in the construction of the model.

To evaluate the color conversion with RBF approach and
traditional tetrahedron approach, a test data set consisting of
9x9x9x9 CMYK data points was used generated. The results
showed that the multiquadric function gave the best performance
for color interpolations. The average interpolation errors are very
similar with both approaches. However, the maximum interpola-
tion error with RBF approach is only half of the maximum error
with the tetrahedron interpolation error. In each case the mean er-
ror is around 1.1 using Euclidian distance in CIELAB. The advan-
tage of using RBF over tetrahedral is most evident in the reduction
of the maximum error. The maximum error for the RBF model
is around 6.92, and the maximum error of tetrahedral approach is
about 11.52. The bigger interpolation errors occur around the yel-
low color, which is L*= 90.1097 a*= -5.2109 , and b*= 86.2261.

The determination of the appropriate number of radial basis
functions for a given set of data is an important problem. In partic-
ular, one has to be careful to not retain too many basis functions or
the error of the representation will actually degrade on the testing
set, even though it may improve on the training set. In Figure 1
we see that the maximum error in the testing data decreases as we
increase the number of centers until about 90-100. At that point,
the error flattens out and actually begins to increase about 250-
300 centers. A similar behavior is seen in Figure 2 showing the
average approximation error for the radial basis function model.
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Figure 1. The maximum approximation error as a function of the number of

centers in the RBF.
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Figure 2. The average approximation error as a function of the number of

centers in the RBF.

Conclusions
The preliminary experimental results illustrated that color

conversion can be effectively carried out using the RBF approach
for constructing nonlinear mappings of data. In our experiment,
we observed that RBF approach provides a significant improve-
ment over the traditional tetrahedral approach in reducing the
maximum error for color conversions.

In future work, we will employ the CIE2000DE model in
conjunction with OLS to assist in our refinement of points based
on the visual color difference tolerance around each center. For
example, about the color L*=90, a*=-2, and b*=50, the human
visual system is sensitive to changes of hue, and has bigger tol-
erance of color difference in the b* direction. Thus, finer grids
points can be generated along it hue direction, and coarser grids
points generated along its chroma (b*) direction.
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