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Abstract 
In this paper, we propose a novel HDR image compression 

method by Fast Integrated Surround Retinex model. The proposed 
method has two novelties. First, multi-scale surround images are 
integrated to a single surround field, which is applied 
to Center/Surround Single-Scale Retinex model. The method 
reduces the “banding artifact” seen in normal SSR and simplifies 
the complicated computational steps in conventional Multi-Scale 
Retinex. Second, the introduction of Gaussian Pyramid cuts the 
computation time for generating a large-scale surround by tracing 
a “reduction” and “expansion” sequences using down and up 
sampling. The proposed model worked well in compressing the 
dynamic range and improving the visibility in heavy shadow areas 
of natural color images while preserving pleasing contrast. 

Introduction 
Human visual system can see over five orders in magnitude 

simultaneously and gradually adapt to scenes with over nine orders 
in magnitude. The conventional display devices, such as CRT, can 
capture the dynamic range of about 100:1. To recreate the viewer’s 
sensation of the original scene, a high dynamic range (HDR) has 
to be compressed to low dynamic range (LDR) of the display 
devices.  

HDR to LDR Tone Mapping Operator (TMO) can be 
classified into global and local operators. Global TMO compresses 
the dynamic range by operating a spatially-invariant tone 
reproduction curve (TRC) with point-wise on the image based on 
the global adaptation of human vision such as average 
luminance[1,2], which is simple and efficient while losing local 
contrast. Alternatively, local TMO uses a spatially-variant 
structure of the image data, such as Gaussian decomposition, to 
preserve local image contrast[3] while at the expense of time 
consumption.  

This paper presents a novel local TMO based on Retinex 
theory[4,5], which suggested to recover the surface reflectance by 
removing the non-uniform spatial distribution of illumination. 
Though various TMOs have been proposed, its key feature is the 
treatment of the spatial distribution of illumination.  

The Center/Surround (C/S) model simply estimates the 
illuminant distribution L around a pixel in attention by averaging 
the image I with Gaussian filter Gm. Since the image I is 
equivalent to the product of the scene reflectance R and 
illumination L, the C/S ratio I/L recovers R. NASA[6-8] 
developed a Multi-Scale Retinex (MSR) by a weighted sum of 
multiple Single-Scale Retinex (SSR) with different standard 
deviation σm to suppress the banding artifacts in high contrast 
edges caused by SSR. The basic NASA model is described as 
follows. 
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The symbol ⊗ denotes convolution. Since the optimization 
of weights is not easy[9], conventional MSR simply applies equal 
weights to all scales of SSR but doesn’t always give the 
satisfactory images. In addition, logarithmic conversion is unstable 
for the dark noise level in shadow and the independent C/S process 
in R, G, and B channel causes the color imbalance. The adaptive 
scale-gain MSR model [10,11] succeeded in stable and excellent 
color reproduction in linear space without logarithmic conversion. 
In this model, the surround image generated only from luminance 
image is used for R, G, and B channel, which keeps the color 
balance well. They also proposed an automatic setting method for 
weights adapted to the scale-gain. However, since the computation 
of weights needs the histograms of luminance SSRs corresponding 
to the multiple scales which takes too much time with increasing 
of Gaussian kernel size, it still needs improvement for practical use.  

Integrated-Surround Retinex Algorithm  
In this paper, we propose an Integrated-Surround Retinex 

model as shown in Fig.1.  
 

 
Figure 1. The overview of Integrated-Surround Retinex 



 

 

Instead of weighting multiple SSRs with different scale σm, 
the proposed model integrates m=1~M different surround image Sm 
generated by different scale σm into a single surround image Ssum 
with the scale-dependent weight w(σm). To keep color balance, Sm 
is calculated by convoluting luminance image Y(x,y) with Gaussian 
Filter Gm with standard diviation σm as Eq.(7) expressed. Eq.(5) 
denotes the C/S ratio of center pixel Ii to integrated luminance 
surround Ssum in the proposed model.   
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In the proposed method, M times division in the computation 
of multiple SSRs is replaced by the easy summation instead.  

 
Optimum Parameters  

Retinex model aims to reproduce the original scene 
reflectance, but in practice, the original scene is usually unknown 
unless the observer sees the captured scene standing at the same 
place and the same time. However the setting of the optimum 
parameters is difficult without the original image. As illustrated in 
Fig.2, we synthesized a visual target image C on screen to match 
the real scene A by modifying the digital camera image B taken 
under non-uniform illumination in our laboratory using Photoshop 
by trial and error[11].  

 

 
Figure 2.  Scheme of target image visually matched to real scene 

To make a quantitative estimation for the proposed model and 
find the optimum parameters, the color differences *

abE∆  between 
the visual target image C and the processed images for the camera 
image B are evaluated in CIELAB color space. 
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P can be any results of proposed method, such as our proposed 
method or NASA. V stands for the visual target image C. 

Considering the computation expense and processing speed, it 
is hoped to produce MSR image from a small number of SSRs. 
Empirically, to produce a MSR image without banding artifact, at 
least three SSR images are needed. As well, we used three scales 

(M=3) of surround images, small (σ1=2), middle (σ2=16), and 
large (σ3=128) to get an integrated surround in the proposed 
method. The gain A and the weight w(σm) are optimized to 
minimize the color difference. When A=0.8 and w(σ1)=0.3, 
w(σ2)=0.1, w(σ3)=0.6, we obtained the smallest color 
difference *

abE∆ =8.6. From the tendency of color difference 
changes we can draw a conclusion that the smallest color 
difference corresponding to each combination tends to increase 
with the decrease in w(σ3) and goes up fast for w(σ3) < 0.5. Hence 
w(σ3 ) ≥  0.5 and large scale σ3=128 are indispensable. This 
conclusion is almost the same as reported by Ref.[11]. In addition, 
we also tested the color reproducibility for a different set of three 
scales (σ1=8, σ2=32, σ3=128). The smallest color difference 

*
abE∆ = 8.9 is obtained when A=0.8 and w(σ1)=0.2, w(σ2)=0.1, 

w(σ3)=0.7. 
Fig.3 shows the results. Our model (d) showed the better 

result than NASA (i) and close to our previous adaptive scale-gain 
MSR (f).  

 

 
Figure3. Color reproducibility results 

Improvement in fast computation 
Retinex algorithm is very time consuming due to a 

convolution between original image and Gaussian filters for 
calculating the larger scale surround images. Particularly, as the 
kernel size of Gaussian filter increases, the convolution time 
dramatically increases. The proposed model has the same problem 
too. For example, when using Gaussian filter with σ=128 (kernel 
size=4σ+1=513×513 pixels) for image size 1280×960, it took 
more than one hour (Pentium 1GHz, Memory 512MB, 
MATLAB). Because the time is mainly consumed in calculating 
the surround image, Gaussian Pyramid method is introduced to 
accelerate the convolution speed in this paper.  

The convolution process in Gaussian Pyramid is illustrated in 
Fig.4. First, the original luminance image g0(x, y) is placed at the 
bottom, and each successive higher level is smaller version scaled 
down by 1/2 in width and height of the previous level. Through the 
K steps sequences, image group: g1, g2, …, gK is constructed, 



 

 

which characterizes the multi-resolution pyramid structure. The 
process from g0 to g1, …, gK is finished by down sampling for the 
low-passed image by Gaussian filter w with 1/2 rate.  

 

    
Figure 4. Fast computation method for surround by Gaussian Pyramid 

Letting the 1/2 reduction function be Reduce, the upward 
down-sampling Gaussian pyramid is expressed by Eq. (9).  
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When the reduced image gk at required level K is obtained, 
the convolution by small-sized Gaussian filter with standard 
deviation σΚ  creates the reduced surround image SK corresponding 
to level K. Then SK is expanded to twice in width and height by 
interpolation and up sampled by twice rate until the surround 
image S0 with the same size as the original image is obtained. This 
downward up-sampling process is expressed by Eq. (10) and (11). 
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The surround Sm expressed in Eq. (7) can be substituted by S0. 
According to Gaussian pyramid, S0 can be obtained by K-steps up-
sampling processes after convoluting gK with Gaussian filter 
Gm(σΚ). Due to the sizes of both gK and Gm(σΚ) reduced to 2-K×2-K, 
the computation time is dramatically reduced.  

We limited the down sampled image size to 32×32 to avoid 
the loss of original image information. Table.1 gives examples of 
the computation time before and after Gaussian Pyramid for two 
different size images. For the original image g0 with size of 
256×192, the size of top image g2 is reduced to 64×48 after K=2 
steps down sampling. Because of σm=σΚ×2K, in this case of K=2, 
we need to compute the convolutions for σK=2, 4, 8, 16, 32, 
equivalent to σm=8, 16, 32, 64, 128, respectively. For σm=64 and 
128, before and after Gaussian Pyramid the computation time is 
reduced to about 1/10 and 1/15 respectively. The time is getting 
much more reduced with increasing σm. For larger image size 
1280×960, after K=4 steps down sampling, the size of top image 
g4 is reduced to 80×60. As Table.1 illustrated, we need only to 
computeσΚ =2, 4, 8, equivalent to σm=32, 64, 128 respectively. 

The computation time is saved to about 1/10, 1/45, and 1/450 after 
Pyramid respectively. The computation time is getting more 
dramatically reduced not only with increasing σm, but also with 
increasing image size. As shown in Table.1,  to image size 
1280×960, the computation time is reduced to 1/443 for σm=128 
after Pyramid. 

Table.1 Reduction in process time by Gaussian Pyramid 
   Size 

 
scale 

256×192 
(sec) 

 
1280×960 

(sec) 

σm normal 
 

Pyramid 
(64×48) 

normal Pyramid 
(80×60) 

8 0.29 0.24 x x 
16 0.75 0.24 x x 
32 2.40 0.39 59.10 5.13 
64 9.13 0.90 236.1 5.34 

128 166.3 10.65 4118 9.29 

Figure 5 (a) and (b) give the results of after Gaussian Pyramid. 
We get almost the same accuracies even through Gaussian 
Pyramid. 

 

 
Figure 5.  Examples of proposed model 

High Dynamic Range Image Compression 
We adapted also our model to HDR image. To cope with the 

high dynamic range, the post-process is necessary. First, we 
compute the integrated surround Retinex image YR(x, y) from 
HDR luminance channel by Eq. (12). 
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Then we make use of YR to get the condition to compress the 
HDR image to LDR image for display device. We found that the 
histogram of YR mostly concentrated in the lower range, while 
scattered in the middle to higher ranges for our tested HDR 
images. Thus we divided the higher range of YR by large interval 
and the lower range by small interval not to lose the details. First, 
the histogram of YR is divided into two parts [Min-Mean] and 



 

 

[Mean- Max] by the mean value Mean. Second, the pixel numbers 
Num1 less than Mean and Num2 larger than Mean are calculated 
respectively. Thirdly, the ratios of Num1 and Num2 to all pixel 
numbers of image are calculated by Eqs. (13). Then, the bins are 
calculated by Eqs. (14). 

 
21

2
2

21

1
1 NumNum

Num
ratio,

NumNum

Num
ratio

+
=

+
=  (13) 

 2211 *255;*255 ratiobinratiobin ==  (14) 

Then the two ranges of [Min-Mean] and [Mean-Max] are 
uniformly divided into bin1 and bin2 respectively. Accordingly, 
the YR image is divided into 255, which is a LDR image can 
display on normal display devices, expressed by Yd(x,y). Finally, 
the compressed color image Idi(x,y) is reproduced by Eq. (15), 
where γ denotes a gamma correction coefficient to control the 
color saturation. In this paper γ =0.5 is used.  
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Two examples of our results are compared with those by 
Larson’s histogram adjustment[12] in Fig.6. For Belgium, our 
result shows better than Larson’s in preserving the contrast, though 
the visibility in shadows is not well as Larson’s. But for Memorial 
Church, our result shows better contrast and details than Larson’s 
result.  

 

 

 
Figure 6. Examples of HDR image compression 

Conclusions 
A concise and fast Retinex algorithm different from 

conventional MSR is proposed by integrating multi-scale surround 
images into a single surround. The proposed model worked as well 
as MSR in suppressing the banding artifacts. The computation time 
was dramatically reduced by introducing Gaussian Pyramid. The 
proposed model worked nice in appearance improvement for both 
normal LDR and HDR images with dynamic range compression. 
To find optimum parameters, we synthesized a target image on 
display visually matched to the real scene observed by naked eye 
in experimental room and used it to evaluate the color 
reproducibility. Finding the more robust and stable parameters in 
full automatic through psychophysical tests for more complicated 
target images is left to future works. 
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