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Abstract  
The differing colour and fastness properties of dyes and pigments 
has predisposed the two classes of colorant towards different 
applications. This paper describes some work directed towards 
improving the fastness of azo dyes, whilst maintaining their 
superior colour properties in the yellow and magenta shade areas. 
The control of hydrogen-bonding offers a means for influencing 
fastness. Promotion of hydrogen-bonding interactions results in 
improved lightfastness, whereas the deliberate blocking of such 
bonding reduces fastness. 

Introduction  
With the continuing increase in printing of digital photographs, the 
need for print longevity has become greater than ever. This need 
for fastness to light and atmospheric oxidants is coupled with a 
requirement to retain acceptable shade and operability from ever 
smaller printheads. Aggregated dyes and pigments tend to exhibit 
enhanced lightfastness compared with disaggregated dyes1 which 
usually give rise to brighter shades and offer greater flexibility in 
ink formulation. These differences in properties between colorants 
has resulted in them finding use in different applications. For use 
in printing digital photographs there is a desire to improve the 
fastness of dyes, whilst retaining their better colour properties. 
This paper describes some work directed towards improving the 
fastness of azo dyes. 

A characteristic feature of pigments is the existence of non-
covalent interactions including, for example, hydrogen-bonds and 
π-stacking, which produce particulate crystals with high lattice 
energies. In this paper we demonstrate that the disruption of 
hydrogen-bonding between hydrazone and triazinyl moieties 
increases the vulnerability of the dye towards destructive entities, 
i.e. disaggregation results in enhanced photofading on paper, 
whereas the promotion of hydrogen-bonding improves 
photostability.  
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Figure 1. Tautomerism in 2-azo-1-naphthol dyes. 

A Model System 
The tautomerism of azo dyes derived from 1-naphthol, coupled in 
the ortho position, is well documented, especially by solution 
studies.1,4 Whilst such dyes adopt predominantly the hydrazone 

tautomer, the position of the equilibrium is known to be influenced 
by pH, substituent effects, hydrogen bonding interactions and 
environment, e.g. solvent.  

The importance of tautomerism on fastness is clearly illustrated 
with reference to the isomeric model dye Orange I, a commercially 
available dye which can adopt both azo and hydrazone tautomeric 
forms. The O-methylated derivative 1 and N-methylated derivative 
2 were prepared, to serve as models of the azo and hydrazone 
tautomers respectively.  
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Table 1 shows the values of ∆E after 100 hours in an accelerated 
lightfastness test. It can be seen that the O-methyl derivative fades 
considerably less than Orange I, whereas N-methylation of the 
hydrazone tautomer has much less effect on lightfastness. It is 
known that the hydrazone tautomer is the most abundant, and the 
fastness of Orange I is closer to the hydrazone locked tautomer 2. 

 
Table 1: Lightfastness of Orange I Derivatives 

 ∆E (100 hours) 
Dye Xerox acid Glossy Paper 

Orange I 33 44 
1 (O-Me) 16 21 
2 (N-Me) 32 55 

 
 
Towards Real Magenta Dyes  
Acknowledging the significance of tautomeric form on the fastness 
of prints led to consideration as to whether tautomerism of groups 
removed from the colorant might offer a means to improved 
fastness. We wished to gain insights towards the enhanced 
lightfastness of dyes containing the hydroxytriazinyl motif, which 
features in several patents2 describing magenta colorants from a 
number of organisations.  This moiety can exhibit tautomerism 
(Figure 2) with extreme structures being a “heteroaromatic phenol” 
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and a cyclic urea (lactim).  These tautomers have differing 
propensities to form hydrogen bonds. In the dyes studied, and in 
model compounds, the triazine group adopts a lactim structure as 
indicated by the characteristic carbonyl stretch (ca. 1713cm-1) seen 
in the infra-red spectrum of solid samples.  
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Figure 2. Tautomeric forms of the hydroxytriazinyl moiety. 

It was reasoned that intermolecular hydrogen bonds formed in the 
solid state i.e. on the media would affect the fastness of prints, as 
they would influence the balance of which tautomer is formed. 
This could be the result of an effective local pH or by direct dye-
dye or dye-media interaction. The monoazo magenta dyes 3-5 
bearing triazinyl groups, typical of commercial ink jet magenta 
dyes, were synthesised using established procedures1 to test 
whether a significant difference in fastness could be realised.  
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The dyes were printed from a simple ink jet ink formulation on 
paper and the samples faded in an accelerated test. The values of 
∆E following 100 hours exposure are given in Table 2. 

 
Table 2: The Lightfastness of Azo Dyes 3-5 Bearing Triazinyl 
Moieties 

 ∆E (100 hours) 
Dye Plain paper Glossy 

Paper 
Glossy 

Film 
3 10 16 17 
4 15 17 33 
5 28 24 38 

 

From the table it can be seen that the substituents on the triazinyl 
group have a marked effect on the lightfastness of the dye, despite 
being far removed from the chromogen. The implication is that 
modifications to the dye structure cause changes in the 
intermolecular interactions either with the paper or other dye 
molecules, which in turn affect reactivity i.e. photofading.  

For full colour ink jet printing three subtractive primaries are 
required – yellow, magenta and cyan. The colorant of choice in the 

cyan area is the phthalocyanine, where significant aggregation 
effects are noted together with good lightfastness, and these 
colorants are not discussed further here. For the yellow shade area, 
where azo dyes are most common, it was felt that increasing 
hydrogen-bonding may offer a means to improved fastness. 

The Hansa yellow pigments display good fastness and so it was 
decided to explore solubilised examples, to ascertain whether the 
brightness advantage of dyes, could be achieved with improved 
fastness by an extended hydrogen bonding network. Three dyes 6-
8 were prepared all containing a similar structure. 
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These dyes might be anticipated to have a differing ability to form 
intermolecular hydrogen bonds. Table 3 confirms that the 
lightfastness of these three dyes is consistent with this. The 
monoamide dye 6 has a lightfastness in between dye 7, which 
possesses both hydrogen bond donors and acceptors, and dye 8, 
where the only hydrogen available for hydrogen bonding is tied up 
in an intramolecular hydrogen bond. 

 
Table 3: Variation in Lightfastness for Dyes with Differing 
Hydrogen Bonding Capability 

 ∆E (100 hours) 
Dye Glossy Paper 

6 15 
7 4 
8 31 

 

Conclusion  
The promotion of hydrogen bonding in different types of yellow 
and magenta azo dyes leads to enhanced fastness. Furthermore, the 
increased fastness of prints is attained without diminishing the 
bright shades, characteristic of these dye types.  

Experimental 
All compounds were characterised by 1H NMR spectroscopy, 
electrospray mass spectrometry and combustion analysis. The data 
obtained were consistent with the proposed structures. 

The dyes were printed from an ink containing by weight 3% dye, 
2% surfactant, 10% non-volatile cosolvent and the balance water. 
Fading experiments were conducted in an Atlas Ci5000 
Weatherometer for 100 hours. ∆E values are reported as the 
difference in CIELAB co-ordinates, measured with an X-Rite 938 
spectrodensitometer, between a faded sample and an unexposed 
sample using the formula ∆E = (∆L2 + ∆a2 + ∆b2)1/2. The error on 
such measurements is less than 2 ∆E units.  
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