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Abstract 
A preliminary investigation was conducted on formation and 
control of micro droplet in electrostatic inkjet phenomena. High 
voltage was applied between an insulative capillary tube filled 
with ion-conductive water and a plate electrode. At the beginning 
of corona discharge, a Taylor cone was formed at the tip of the 
tube and the top of the cone was broken to form a very small 
droplet that was dispersed like mist at wide angle due to the 
Coulomb repulsive force of charged mist. When the applied 
voltage was further increased, water droplet was formed 
periodically. The charge to mass ratio of the droplet was measured 
and compared with the Rayleigh’s limit. It was less than the limit 
because the droplet vibrated at the formation of the droplet. 
Another experimental set-up was constructed to control the 
dropping position of the droplet. A ring electrode was settled 
between the capillary tube and the plate electrode to control the 
dropping position of the droplet. 

Introduction 
It is well known that an electrostatic ink jet phenomenon is 
observed when a tube filled with ink is used for the pin electrode in 
a pin-to-plate system.1 This phenomenon is expected to be applied 
not only for ink jet printing systems2 but also for biological and 
analytical chemistry. This ink jet phenomenon and its application 
have been investigated by many investigators3-6 since the first work 
by Rayleigh7 on the stability of a charged drop. He deduced that 
there is a limit to the charge that can be sustained by the drop, 
above which it becomes unstable and disrupts. This limit is known 
as the Rayleigh’s limit. A number of workers have investigated the 
effect of an electrostatic field at a liquid surface since then. In any 
published study, however, nothing has been reported on the 
relationship between the electrospraying phenomena and the mode 
of gas discharge, in spite of the fact that kinetics of dark discharge 
are quite different to those of corona discharge in a pin to plate gas 
discharge system.8  

In this paper, we clarify how the formation of the droplet in the 
corona discharge field is influenced by the mode of discharge, by 
use of kinetics in the pin-to-plate gas discharge field. In this 
system droplet was dispersed like mist because of repulsion of 
charged droplets. We constructed an experimental set-up to bundle 
the dispersed droplet. 

Droplet Formation 
Experimental Set-up 
An experimental set-up illustrated in Fig. 1 was constructed to 
investigate characteristics of the formation of droplets in the 
electrostatic field. The capillary tube made of silica coated by 

polyimide (Polymicro Technologies, Phoenix, AZ) was equipped 
with a bottom of a syringe. The tube had 100 µm inner and 170 µm 
outer diameters. This tube with water was mounted perpendicular 
to a plate electrode made of stainless steel. DC voltage was applied 
by a function generator (Iwatsu, Tokyo, SG-4105) and a high 
voltage amplifier (Matsusada Precision Inc, HEOP-10B2). The 
current was measured by the voltage drop in a current-shunt 
resistor. The formation of the droplet was observed with a high-
speed microscope camera (Photron Inc., Japan, FASTCAM-MAX 
120K model 1) and a light (San-ei Electric Inc., Japan, XEF-501S). 
Another experimental set-up, shown in Fig. 2 was constructed to 
measure the charge on an individual droplet. A small hole, 5 mm 
in diameter, was opened at the center of the plate electrode and 
parallel plate electrodes were set under the plate electrode. In this 
configuration, the charged droplet was moved when voltage was 
applied between the parallel electrodes. 
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Figure 1. Experimental set-up. (1: water pin electrode, insulative capillary tube 
filled with water, 2: metal plate electrode, 3: water tank, 4: CCD camera, 5: 
DC high voltage power supply, 6: high voltage amplifier, 7: shunt resistor, 400 
kΩ, 8: resistor: 400 kΩ, 9: function generator, 10: oscilloscope, 11: volt meter, 
12: linear stages, x and y directions, 13: mechanical z-stage, 14: stroboscope 
light) 
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Figure 2. Experimental set-up to measure charge of droplet. (15: metal plate 
electrode with a hole, 16: parallel plate electrode) 
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Fundamental Characteristics 
In the first place, the current-voltage characteristics of the water 
pin electrode were measured and compared with those of the metal 
pin electrode of the same diameter as the inner diameter of the 
insulating tube. The results are shown in Fig. 3. In case of the 
water pin electrode, although a pulse current was superposed on 
the corona current, corresponding to the separation of the droplet, 
as described below, a stable corona current was measured. Corona 
current of the water electrode agreed well with that of the metal 
pin electrode and fundamental characteristics of the discharge were 
common. That is, no current flowed in the dark discharge region, 
however, when the applied voltage reached a threshold (about 2 
kV), corona discharge took place, and the corona current in the 
order of micro ampere flowed. 

As added in Fig. 3 the formation of the droplet was classified into 
the following three modes corresponding to the discharge modes. 

MODE 1: In the dark discharge region, 0 ~ 2 kV, a drop was 
formed at the tip of the tube. This became gradually large and 
finally separated. The diameter of the drop was several times larger 
than that of the tube diameter and the drop period was long, more 
than a second. Characteristics and mechanism of MODE 1 were 
already reported.6 

MODE 2: At the beginning of the corona discharge, 2 ~ 4 kV, a 
Taylor cone was formed at the end of the tube and the tip of the 
cone periodically separated from the cone to form a very small 
droplet of the order of several tens of microns in diameter. Figure 4 
shows the transient formation of droplets in the MODE 2 region. 
Droplets dispersed over a wide angle, like mist. Trajectory of the 
droplet was unstable and the frequency of the droplet formation 
was very high, in the order of kHz. 

MODE 3: At higher voltage, the Taylor cone changed to 
hemispherical and the droplet became relatively large, nearly the 
same as the tube diameter. Figure 5 shows the formation of the 
droplet in the MODE 3 region. The frequency of the droplet 
formation was 10 ~ 100 Hz.  

Figure 6 shows the diameter of the droplet. Droplets at MODE 2 
were much smaller than those of MODE 1, because only the tip of 
Taylor cone formed a droplet at MODE 2. The diameter became 
large at high voltage. There are two possible reasons of this 
characteristic: one is that the reaction force of the ionic wind 
prevented the separation of the droplet from the tip of the Taylor 
cone, and another is relaxation of the electric field, which made the 
tip of the Taylor cone relatively round. Further investigation is 
necessary on the mechanism of the droplet formation in the MODE 
2 region, for it is anticipated that MODE 2 may be utilized for a 
micromist spray and formation of the small droplets. 

Diameter and Charge of Droplet 
A trajectory of a charged droplet was deflected in the electrostatic 
field formed by the apparatus shown in Fig. 2. Equations of motion 
of droplet were expressed as follows. 
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Figure 3. V-I curves in pin-to-plate electrode system. (φ 100 µm inner tube 
diameter, φ 100 µm metal pin diameter, 3 mm air gap)  
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Figure 4. Formation of Taylor cone and droplet at MODE 2. (2.71 kV applied 
voltage) 
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Figure 5. Formation of droplet at MODE 3. (3 mm gap, 70 mm water level, 4.5 
kV applied voltage)  
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Figure 6. Applied voltage versus droplet diameter. 
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 rc aπη6=  (3) 

where m is mass of the droplet, c is coefficient of air drag, q is 
charge of droplet, η

a
 is viscosity coefficient of air. Mass of droplet 
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was calculated from the diameter measured by the high speed 
camera. Figure 7 shows the electric field which was calculated 
with the Poisson’s equation and the conservation of charge. Charge 
of droplet was calculated from the dropped position and 
electrostatic field. 

Parallel plate electrode (φ = V0) 

Parallel plate electrode (φ = 0) 

Metal plate  
electrode (φ = 0) 

x 

y 

 
Figure 7. Potential distribution. 
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Figure 8. Critical diameter of droplet versus charge-to-mass ratio at corona 
discharge. 

We assume that the break of the force balance between the 
Coulomb repulsive force and the surface tension causes the 
separation of droplet at the tip of the Taylor cone.9 This condition 
is determined by the following Rayleigh’s limit.10 

 3
08 Rq γεπ=  (4) 

where ε
0
 is the permittivity of free space and R is the radius of the 

droplet. Another model was established by Vonnegut and 
Neubauer based on the energy minimization principle.11 The 
Vonnegut’s limit is half the Rayleigh’s limit. Figure 8 shows 
Rayleigh’s and Vonnegut’s limits and the measured relationship 
between droplet diameter and charge. Measured results were lower 
than Rayleigh’s limit but agreed fairly well with Vonnegut’s limit. 

Dropping Position Control 
In this electrostatic inkjet system, droplet was dispersed like mist 
because of repulsion of charged droplets. We constructed an 
experimental set-up illustrated in Fig. 9 to bundle the dispersed 
droplet. A ring electrode was settled between the capillary tube and 
the plate electrode. Figure 10 shows pictures of droplet 
distribution. Droplet distribution was composed of dark part and 
pale part as shown in Fig. 11 and 12 because small droplets were 
dispersed by the electrostatic repulsive force. When the voltage of 
the ring electrode was high, dark and pale diameters were shrunk 

because the electrostatic field around the tip of the tube was 
concentrated. 
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Figure 9. Experimental set-up to bundle dispersed droplet. (17: ring electrode 
(inner diameter: 10 mm)) 
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Figure 10. Picture of droplet distribution. ((a) applied voltage to water pin 
electrode was 3.2 kV, no control electrode, (b) applied voltage to water pin 
electrode was 4.9 kV, applied voltage to control electrode was 4.0 kV) 
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Figure 11. Distribution of dark part. (parameter: voltage of control electrode） 
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Figure 12. Distribution of pale part. (parameter: voltage of control electrode） 
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Concluding Remarks 
We have investigated electrostatic ink jet phenomena in the gas 
discharge field between an insulative tube filled with ion 
conductive water and a plate electrode. At the beginning of corona 
discharge, droplets in the order of several tens of microns were 
dispersed like mist and the frequency of droplet formation was 
very high, in the order of kHz. At the stable stage of corona 
discharge, diameter of droplets were about one hundreds microns. 
Measured charge-to-mass ratio was lower than Rayleigh’s limit but 
agreed fairly well with Vonnegut’s limit. 

When a ring electrode was settled between the insulative tube and 
the plate electrode, droplet distribution was shrunk because the 
electrostatic field around the tip of the tube was concentrated. 
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