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Abstract  
Piezoelectric micro-pumps are largely used in drop on demand 
applications for medical purpose and in the printing industry. In 
order to diagnose and control such a system, a non-linear model 
has been developed to predict the velocity of the ejected drop. We 
show here that data from experiments are in good agreement with 
our model predictions, showing that the ejection velocity is strong 
a function of the applied voltage. 

Introduction 
In the field of microfluidics, many devices such as microscale total 
analysis systems (µTAS)1,2 and other specialized systems are being 
developed presently for genetic analysis3 or clinical diagnosis.4 A 
key component in such a system is the micro-pump which may be 
fabricated following different techniques.5,6 Besides these new 
applications, piezoelectric micro-pumps have always been one of 
the main components in ink-jet printing systems.7 In actual printing 
systems, there may be a large discrepancy between required and 
measured ejection velocities what is even worse, is that differences 
in characteristics may occur from one drop to another leading to a 
loss of quality in the printed patterns.  

To remedy to the above cited problems we propose in this paper, a 
tool which should help to analyze and control the flow for drop on 
demand applications. We show here that this tool based on a non 
linear model, is able to predict accurately the ejection velocity of a 
droplet, the ejected volume and the pinch-off time. 

In case of discrepancy between required and measured velocities, 
i.e. nozzle clogging, the tool is able to control the system acting on 
the transducer in such a way as to reduce the tracking error (the 
difference between required and measured velocities), these 
different steps will be developed in this paper. 

System Modeling 
Geometrical Configuration 
In general, the geometrical configurations of industrial systems 
may be quite complicated to model or even not fully characterized. 
For this purpose, an equivalent mechanical system comprising an 
axisymmetric chamber fitted with a piezoelectric transducer and 
for which the unknowns are the length and radius of the chamber 
and the piezoelectric characteristics of the transducer is proposed. 
This is for the simplest case and one may consider many other 
unknowns as shown later. The considered equivalent micro-pump 
comprises the transducer at one end and the nozzle, with a known 
radius, at the other end. The inlet is connected to the fluid reservoir 
and the outlet comprising the nozzle, of much smaller dimension 
than the inner diameter of the chamber,8 is represented in figure 1. 

 
Figure 1. Equivalent mechanical system 

Determination of the Flow in the Pipe 
The ejection process can be described by the following three 
steps8: 
• Displacement of the transducer and consequent transient start-

up of the fluid (Step one). 
• Backward movement of the transducer when the voltage step 

is finished (i.e. U=0V) (Step two).  
• Drop formation (Step three). 
• Drop ejection (Step four). 
 
Is important to notice that in this work, negative voltages are not 
considered.  

 

 
Figure 2. Ejection process 

Step One: Transient Start-Up of the Fluid 
The fluid is taken to be viscous and Newtonian. Considering the 
flow in a circular pipe, the velocity in this pipe is given by: 

( ) ( ) ( )z zV t ,r P t ,z V t,r1 1 r
t z r r r

µ
ρ ρ
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where Vz(t,r) is the velocity on the axis of the flow, ρ is the fluid 
density, µ the viscosity of the fluid and P(t,z) the pressure term. 

Assuming that the pressure gradient is constant in the pipe, we 
obtain: 

 
( ) ( ) ( ) ( ) ( )pzt cap c logP t ,z P t PP t,z P t,z t
z L L

− −∂
= − = −

∂
  (2) 

L is the pipe length P
pzt

(t,z) the pressure created by the transducer, 

capP the capillarity back pressure defined by: 
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γ the superficial tension, a singular head loss representing the 
clogging effect: 

( ) ( )2
log log

1
2c c zP t k V tρ=  (4) 

with k
clog

∈ℜ+. 

In order to express the fluid velocity we have to detail the 
deformation of the piezoelectric transducer.9 
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with E the Young modulus, T
fluid / pzt

 =  - P
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 the mechanical stress 
(equivalent to a pressure term), d

33
 the piezoelectric strain 

coefficient, U the applied voltage, e the transducer thickness. 
Considering an incompressible fluid, equation (1) becomes: 
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with the following initial and boundary conditions: 
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Step Two: Backward Movement of the Transducer 
When the transducer returns back to its initial position, this leads 
to a decrease of the ejection velocity.  
Applying Newton’s first law: 
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and with 
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F1, accounts for the ambient and capillary pressures whilst the 
second term, F2, characterizes the interaction between the 
transducer and the fluid.10 Finally, the third term, F3, represents the 
viscous stresses. The weight can be neglected here because it is 
very small compared to the other forces acting in this case. 

Step Three and Four: Drop Formation and Detachment 
In the first phase, a volume of fluid is expulsed through the nozzle 
and this corresponds to the initial volume of the drop, V

ol_drop_init
. The 

velocity of the latter is equal to the maximum of the flow velocity. 
The drop volume grows much more slowly during the second 
phase. During the third step, the drop under formation is deformed 
by the surface tension effect as represented in figures (2,3) and it is 
possible to determine if a drop is really formed or not (phase four). 
 

mgr  

F
r

2a 

Filament 

Vol drop init 

 
Figure 3. Schematic of drop formation representing the main forces in 
presence 

From the equilibrium of forces, the velocity of the drop which may 
detach, is given below: 
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2
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with V
drop_fall

(0) = max(V
z
(t,0)), a(t) the minimum radius of the 

filament, z
g
 the length of the filament and where F(t)=2πa(t)γ 

represents the surface tension effect, and V
ol_out

 is the fluid volume 
expulsed out of the nozzle:  
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_ 0
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t

ol out zV R V dt π τ τ= ∫   (10) 

A necessary condition for drop detachment is: 

_ ( )
0drop falldV t

dt
>   (11) 

If the initial volume of the drop is such as the above condition is 
not fulfilled then the mass of the fluid retracts back into the nozzle 
and the flow is stopped (i.e. no drop detachment happens). 

If this condition is fulfilled, then the drop is ejected and the pinch-
off time, T

poff
 is given by: 

_ ( )
0drop fall poffdV T

dt
=   (12) 

Moreover the volume of the ejected drop, V
ol_drop

, is: 

( )_ _ol drop ol out poffV V T=    (13) 

According to figure 4, the evolution of the minimum radius of the 
filament (a(t)) can be estimated using: 
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and with the following boundary conditions: 
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where (β, δ) are some real fixed number. 

 

Figure 4. Schematic of the drop profile representing the upstream and 
downstream curvatures of the drop. 

Validation 
Model Linearization 
In order to solve equations (1,8) the backward algorithm of the 
finite difference method on the spatial term is used. 

This approach can be extended to any geometrical configuration of 
the micro-pump using either finite differences or finite elements 
depending on the complexity of the flow geometry. Then, putting 
it into a matrix form to be solved later using MATLAB®, and for a 
given number, n, of spatial discretization points, we obtain: 

( ) ( )
,1 z

z

V t r
r V t

r r r
µ
ρ

 ∂ ∂
=   ∂ ∂  
Α  (17) 

where A ∈ Μ
n,n 

Experimental Set-Up 
The experimental set-up used in this work comprises a droplet 
generating device, an illumination source, a fast shutter camera and 
an optical system. The images are acquired and then processed 
using the “Image processing” toolbox from MATLAB®.  

Calibration 
For the calibration purpose, we use an industrial print-head for 
which we know some of the characteristics .The simulation tool is 
sufficiently robust to take into account various parameters which 
may influence the behavior of a print-head. Assuming that all 
unknown geometrical configuration can be transformed into an 
equivalent form as presented in figure 1, unknown parameters can 
be identified to predict the behavior of such a device. 

Table 1: Comparison between theoretical and experimental 
values after calibration for a Spectra® print-head 

 Initial 
volume (L) 

Velocity 
(L) 

Ejected 
volume (L) 

Pinch 
off 

Theoretical 3.01.10-11 L 4.39 m.s-1 3.02.10-11 L 73 µs 

Experimental 3.10-11 L 4.4 m.s-1 2.99.10-11 L 73 µs 
 

Design of a Control System 
The present work is focused on the adaptative control of the 
voltage level applied to the transducer during the first step of the 
ejection process. The control of the velocity of the ejected drop at 
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the end of step one is of primary importance. Indeed if the flow is 
constant for a fixed time, the ejected volume will be constant too. 

Model Simplification 
Equation (6) is quite complicated in the view of the establishment 
of the control strategy. Taking into account the fact that in a 
cylindrical pipe, the velocity profile in the radius direction is 
parabolic: 

( ) ( ) ( )
2 2

2 2
0 0

1 1, , 0V V Vz z
r r

t r t r tR R
   

− −= ==    
   

 (18) 

where V(t)=V
z
(t,r=0) is the velocity on the axis of the flow. Using 

(18) the term representing the viscous stresses effect in (6) can be 
rewritten as: 

( )
( )2

0

,1 4zV t r
r t

r r r R
µ µ
ρ ρ

 ∂ ∂
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V  (19) 

Then with (6), (18) and (19), the velocity on the axis of the flow is 
given by: 
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The model used for the control synthesis is finally obtained:  
2

logc vU k p fα β= − − −V V V&  (20) 

with : 
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For an industrial inkjet system we have the following constant: 
α≈510-5, β≈2, p≈24.5, k

clog
 ≥ 0. 

The above constants are expressed in International System Units. 

Experimentally, the flow velocity is only measured at the end of 
the first step of the ejection process. Moreover, the duration of the 
applied voltage step is such that the flow velocity reaches its final 

value. Thus, the main goal of the control system is to control the 
amplitude of the ejection velocity of the fluid, and to estimate and 
reject external perturbations caused by the clogging of the nozzle. 
Owing to the fact that the velocity is sampled at the end of the 
applied step voltage, and that at this time the velocity is constant 
(i.e. 0=V& ), from (20) we obtain for the flow velocity at the end 
of the applied voltage: 

( ) ( ) ( )( )2
log

1V Vs c s
v

t T U k t T pt
f

β= = − = −  (21) 

where U(t) = U
0
 and T

s
 are the amplitude and the duration of the 

applied voltage respectively, t∈[0 T
s
]. 

Control System 
We give below, in figure 5 a schematic of the control system 
including an estimation of the clogging effect: 

 

 
Figure 5. Control system using clogging estimation. 

Figure 5 shows that the voltage is modified as a function of the 
tracking error. 

Taking: 

( ) *2 **
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ˆ
kk v ckU f k pz β= + ++ VV   (22) 

where 

1k k i kz z K e−= − and 1
log log 2

ˆ
k

k v k
c c

k

U p f
k k

β
− − −

= =
V

V
 : 

The system is stable for all log
ˆ

kck  only if K
i
∈[0 2]. 

The control law based on the estimator performs much better that 
the integrator control law. So, if one assumes that the model is 
known, one can estimate the clogging level and control the 
process. 

Figure 8 shows that if there is a perturbation on the output 
(velocity measurement in our case) the estimation is no more 
exact, but the system is still controlled. 
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Figure 6. Transient evolution of the perturbation.  

 
Figure 7. Comparison between two integral control law (with and without 
estimation) 

 
Figure 8. Clogging level estimation with unexpected perturbation. 

Conclusion 
In this paper, a simulation tool for piezoelectric micro-pumps is 
reported. Departing from the Navier-Stokes and piezoelectric 
equations for an axisymmetric configuration a generic model 
describing the functioning of piezoelectric micro-pumps is given. 
A second part focuses on the design of the control system and 
gives two control laws which are able to control and reject all 
perturbation on the system, or to control the system using the 
estimation of the nozzle clogging level. This work demonstrate 
that an adequate strategy can be found taking into account different 
operating condition. We will, in the future, work on the extension 
of the control system to multi-head printing processes. 
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