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Abstract 
Silicon Micro-Electro-Mechanical (MEMS) processing provides 
the foundation for a new drop-on-demand ink jet technology from 
Spectra, a Dimatix Division. Miniature features, piezoelectric 
actuators, and monolithic silicon construction create a robust 
platform for the development of an entirely new family of high 
precision printheads for a variety of printing applications. This 
paper will present an investigation of the performance of a 304 jet, 
10 picoliter jet module, known as the Spectra M-300/10. 
Formed from single crystal silicon wafers, the M-Class jetting 
structure has been designed to provide very high frequency 
response with very low crosstalk interactions. The basic output 
parameters such as uniformity, straightness, and crosstalk will be 
analyzed. The relationships between drive pulse, drop mass, and 
drop velocity, which define the typical operating window for this 
jet module will be investigated. Opportunities to expand the 
operating window by utilizing the flexibility of the jet and 
electronics package to create larger drops will be presented. By 
packaging the M-300/10 in a variety of configurations, many 
operating scenarios can be realized. 

Introduction  
Drop-on-demand non-impact printing is expanding beyond 
conventional printing and graphics arts into applications that 
require increased print resolution, higher productivity, and more 
capable inks. As a consequence, the demands on ink jet printheads 
include higher operating frequencies, greater uniformity, more 
precise drop placement accuracy, and improved chemical 
resistance. Silicon MEMS processing is ideally suited for this 
enlarged application space, through further miniaturization of 
digital printing devices with increased precision and uniformity, 
and the utilization of inherently robust construction materials. The 
Spectra M-Class jet module is the first industrial piezoelectric 
printhead to fully exploit the potential of Silicon MEMS 
processing for emerging drop-on-demand non-impact printing 
applications. 

The construction of the M-Class jet module is based on silicon 
wafer fabrication processes with a thin layer of piezoelectric to 
provide the jet actuation. The basic jet design is illustrated in 
Figure 1. The jetting mechanism includes an ink fill passage, 
acoustic dampening features, a pumping chamber which is capped 
by the piezoelectric actuator, and a descender passage that leads to 
the nozzle exit. The dimensions of the jet are scaled to provide 
very high resonance frequencies. It is important to note the 
presence of a thin membrane that isolates the piezoelectric from 
the pumping chamber, providing superior degree of chemical 
resistance. 

 
Figure 1. Schematic of basic jet design 

The jets are arranged into a matrix of 304 individually addressable 
channels consisting of two symmetric rows. The pumping 
chambers are inter-digitated to provide a single row of nozzles. 
The nozzles are equally spaced at 0.1411 mm pitch, which 
corresponds to a native printing resolution of 180 dpi. A picture of 
the completed silicon die is shown in Figure 2. The die is about 46 
mm by 6.4 mm to produce a reduced footprint that facilitates high 
packing densities in a large printing unit. The die is then packaged 
into a module assembly which includes filtration, ink inlets and 
electrical interconnects. These modules can then be packaged into 
larger assemblies, which provide native resolutions required for 
single pass printing or multi-color scanning applications. 

 
Figure 2. Layout of complete die (304 jets) 
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M-Class Design Characteristics 
The M-Class jet module is designed to operate at voltages below 
40 volts, with typical operation requiring about 25 volts. By 
design, module output can be varied by changing waveforms. For 
the purpose of characterizing the manufactured device, a nominal 
condition of 8 m/s with a standard waveform has been defined. In 
this condition with a single drive pulse, drop mass of 8 nanograms 
and velocity of 8 m/s are typically achieved. As voltage is 
increased, mass and velocity will provide the linearly proportional 
response shown in Figure 3. It is important to note that this 
response is for a fixed waveform. Other waveforms, which shift 
the mass/velocity relationship, will be discussed later in this paper. 

The capability of the manufacturing process is evident in the 
performance output. For example, jet velocity uniformity is a 
function of the etch uniformity, wafer thickness controls, PZT 
fabrication and assembly techniques. Figure 4 shows the 
distribution of velocity over 304 jets measured at the nominal 
setpoint of 8 ng. The data shown has a velocity variability of 2% 
standard deviation from the nominal velocity of 8 m/s. This result 
is typical of the MEMS processing capabilities. 
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Figure 3. Mass/velocity curve for the M-Class module, shown as a function of 
increasing voltage for a single waveform. 
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Figure 4. Velocity profile for M-Class module at the nominal test condition. 

Also inherent to this design is the ability to address multiple 
channels with minimal interaction. This interaction, which is 
known as crosstalk, can be manifested as the result of a physical 
interaction between nearby channels. Crosstalk can serve to 
increase or decrease channel output as larger numbers of jets are 
utilized. If crosstalk between channels is more than a few percent, 
the uniformity of output will be negatively impacted. Imaging 
defects associated with crosstalk can include light and dark 
banding, as the drop volumes deviate from their nominal setpoint. 
Crosstalk is measured by firing each jet by itself and measuring 
drop velocity. Then each jet is fired in combination with other jets 
and the resulting change in velocity is measured. This delta 
velocity is reported as the crosstalk effect. For practical reasons, 
mass is not measured, but it is understood that mass crosstalk is 
proportional to the square root of the velocity crosstalk. 

The M-Class jet module is designed for very low crosstalk. 
Mechanical isolation of the pumping chambers and fluidic 
dampening features are critical features in the module design. In 
Figure 5, the crosstalk effect of neighboring channels (+2/-2) is 
shown to be 2% for 5 modules. When many jets are fired on the 
array, the total effect of crosstalk is about 3%. This is comparable 
to Spectra Gen 2 product technology and superior to other 
commercially available printheads. 

 
Effect of Crosstalk on Jet Velocity
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Figure 5. Crosstalk effect with neighboring jets firing and with all jets firing. 

Another important outcome of the fabrication process is the nozzle 
straightness. Precision lithography techniques and single-crystal 
silicon processing allow us to manufacture nozzles with a 
straightness capability that exceeds any other commercially 
available printhead. In Figure 6, the straightness histogram of 10 
printheads is shown. The data for these 10 heads is given in 
milliradians and the overall population has a standard deviation of 
0.87 milliradians. This capability of the M-Class jet module will 
provide success in applications where precision is the driving 
requirement. 
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Histogram of Jet Straightness 
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Figure 6. Histogram of jet straightness errors for 10 modules (3040 jets). 

Dynamically Responsive Jet Design 
For the purpose of characterizing the M-Class jet module, a 
nominal waveform has been defined. For this waveform, the 
module achieves a fixed relationship between drop mass and 
velocity and a fixed frequency response. The module, however, is 
designed to provide very high system natural frequencies on the 
order of 100-150 kHz. This enables the module to respond to a 
wide variety of complex pulses. In order to broaden the application 
space, waveforms can be tailored to create larger drops, faster 
drops or to create frequency response that targets a specific 
productivity window. Figure 7 shows the variation in the 
mass/velocity response that can be achieved by changing the 
waveform. For a constant velocity of 8 m/s, a range of drop mass 
from 8 to 16 ng is demonstrated. This is only one example of the 
flexibility that allows the M-Class jet module to be implemented in 
a wide variety of applications. 

Mass vs Velocity for Two Waveforms
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Figure 7. Mass and velocity response for variable waveforms. 

Multi-Pulse / Grayscale 
An important feature of new printing technologies is the ability to 
produce varying spot sizes on the media on a pixel-by-pixel basis. 
This means that each channel can eject a different amount of ink 
from its neighbor at each firing cycle. This process allows the end-
user to maximize the productivity of lower resolution printing 
(large drops), while attaining the quality of higher resolution 

printing (small drops). There are several methods of achieving 
grayscale printing. The method that has been implemented in the 
M-Class module is to use a high frequency firing rate that produces 
large drops just outside the nozzle, before the drop separates from 
the meniscus. This is an improvement over multi-drop techniques 
because the flight errors of multi-drops can detract from the overall 
image quality.  

An example of grayscale capability can be seen in Figure 8. This 
technique uses three different waveforms that can be stacked in a 
manner compatible with grayscale electronics. Each channel has 
the ability to be addressed with the waveform required to generate 
the desired drop size. In these photos, the drops emerging from the 
nozzle can be seen to have excellent formation properties – 
spherical, uniform in size and velocity, and with minimal tails or 
satellites. At this time, 4 level grayscale imaging has been 
demonstrated with the M-Class module, with small to large drop 
size ratios up to 5:1. The dynamically responsive nature of the jet 
design will enable tailored drop shaping, multi-pulse, and 
grayscale implementations to achieve application specific imaging 
requirements. 

  
      6 ng drops     19 ng drops 

 
                     29 ng drops 

Figure 8a, b, c. Drop variation achieved using variable waveforms (6ng, 19ng, 
29ng). Each waveform is a subset of the next waveform to permit grayscale 
operation. 

 
Conclusion 
The performance of the Spectra M-300/10 has been reviewed. 
Key design characteristics such as drop mass, drop velocity, and 
inherent crosstalk characteristics have been presented. The 
straightness capability of the silicon nozzle process has been 
described. In addition, the ability to use wave shaping to change 
the relationship between drop mass and drop velocity has been 
demonstrated. The ultimate reflection of this capability is shown in 
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the achievement of 4 level grayscale, which is enabled by this 
technology. 

The M-300/10 can be packaged into higher-level assemblies, 
which will provide native resolutions required for single pass 
printing or multi-color scanning applications. These assemblies 
include additional functionality such as ink supply, temperature 
controls and ink-level sensing. The purpose is to provide complete 
solutions for printing applications. 
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