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Abstract 
In forensic applications, identification of the source of a printed 
document can be very critical. However, this task is very 
challenging, because there are a variety of factors, such as the 
media type, the age of the printer, and the amount of colorant left 
in the cartridge that can affect the characteristics of a printed 
document. For inkjet printers, the availability of different print 
modes, and the use of variety of ink types adds even more 
complexity to this process. In this paper, we investigate different 
texture features of the characters printed by inkjet printers for 
classification based on text-only documents. We check the in 
model stability of these features by using a cost function. Finally, 
we perform stepwise discriminant analysis to reduce the feature 
set.§

 

Introduction 
Identification of the source of a printed document can provide 
valuable information in forensic applications. For this purpose, we 
need to identify some features of the printer by investigating the 
contents of a printed document. These contents may include 
images, charts, or text. In this project, we are interested in text-
only documents. There are two basic type of printers in the market 
that are widely used by an average customer: electrophotographic 
(EP) and inkjet printers. Wolin et al gave an overview of the 
characteristics of different printing techniques and suggested 
different ways to identify these printers in his paper.1 Oliver et al 
used variety of image features and print quality metrics to 
discriminate one inkjet printer model from another.2 In previous 
work with laser EP printers, Ali et al used the banding artifact as 
an intrinsic signature for printer identification.3,4 They applied 
principal component analysis and Gaussian mixture models for 
classification of the printers. Mikkilineni et al used texture features 
of the printed characters to identify the model of the EP printer 
that is used to print the document in question.5,6 More specifically, 
they focused on the texture features introduced by Haralick et al.7 
In this paper, we investigate similar texture features to be able to 
identify different models of inkjet printers. We search appropriate 
features for printer classification by changing the parameters of the 
texture features. We first choose the texture features that are stable 
within the same printer model. Finally, among these features, we 
select the most significant ones for printer classification by 
performing stepwise discriminant analysis. 

Harlick’s Texture Features 
The features that are used to identify different printer models have 
to be robust to certain variations in the inkjet printers. For 
example, if we use the average gray level of a character as a 
feature, this feature may heavily depend on the amount of colorant 
left in the cartridge. Also the features should not depend directly 

on the size or type of font of the character. For example, if we use 
the length or width of a character as our feature, this will directly 
depend on the type and size of the font used in that document. To 
be able use this feature, the font type and size of the character has 
to be detected first, which will make the process too complicated. 
For these reasons, we decided to use Haralick’s texture features as 
our feature set.7 

Haralick’s features are based on gray-tone spatial dependencies of 
the image. The gray-level co-occurrence matrices (GLCM) are 
used to calculate these features. This matrix is an estimate of the 
second order probability density function of the pixels in the 
character image. Suppose that the image has N

x
 pixels in the 

horizontal direction and N
y
 pixels in the vertical direction, and 

there are N
g
 gray levels for each pixel. We can define L

x
 = 1, 2, …, 

N
x
 as the horizontal spatial domain and L

y
 = 1, 2, …, N

y
 as the 

vertical spatial domain. Then L
x
 × L

y
 will be the set of pixels 

ordered by their row-column designations. The texture-context 
information in the character image is contained in the overall 
spatial relationship which the gray tones in the image have with 
one another. 

An entry of a GLCM P(i, j, d, θ) represents the frequency of two 
neighboring pixels in an image I separated by a distance d at an 
angle of θ with gray-level values i and j. For the angle θ, four 
angles of 0°, 45°, 90°, and 135° are considered. Formally, we can 
define the frequencies as follows: 

P(i, j, d, 0°) = #{((k, l), (m, n)) ∈ (L
y
 × L

x
) × 

(L
y
 × L

x
), |k − m = 0, |l − n| = d, 

I(k, l) = i, I(m, n) = j}, 
P(i, j, d, 45°) = #{((k, l), (m, n)) ∈ (L

y
 × L

x
) × 

(L
y
 × L

x
), | (k − m = d, l − n = − d), 

or (k − m = − d, l − n = d), 
I(k, l) = i, I(m, n) = j}, 
P(i, j, d, 90°) = #{((k, l), (m, n)) ∈ (L

y
 × L

x
) × 

(L
y
 × L

x
), ||k − m| = d, l − n = 0, 

I(k, l) = i, I(m, n) = j}, 
P(i, j, d, 135°) = #{((k, l), (m, n)) ∈ (L

y
 × L

x
) × 

(L
y
 × Lx), | (k − m = d, l − n = d), 

or(k − m = − d, l − n = − d), 
I(k, l) = i, I(m, n) = j}. (1) 

 
where # denotes the number of elements in the set. Note that these 
matrices are symmetric, P(i, j, d, θ) = P(j, i, d, θ). Given a GLCM, 
14 different textural features can be calculated. The following 
equations define these features. 
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Notation 
p(i,j) (i,j)th entry in a normalized gray-tone 

spatial-dependence matrix, p(i,j) = 
P(i,j)/R, where R is the number of pixel 
pairs. 

p
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Textural Features 
1. Angular Second Moment: 
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Table 1: Printers installed in the printer bank. 
Maker Printer Model Print Mode 
HP 3420 Normal 
HP 3650 Normal 
HP psc1315 Normal 
Lexmark Z25 Better 
Lexmark Z2250 Normal 
Canon S330 Standard 

 

13. Second Information Measure of Correlation: 
f13 = (1 − exp [−2.0 (HXY2 − HXY)])1/2 

where HX and HY are entropies of p
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14. Maximal Correlation Coefficient: 
f14 = (Second largest eigenvalue of Q)1/2 where 
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Some of the measures that are defined above have intuitive 
meanings, but for some of them, it is difficult to identify which 
special textural characteristic they represent. The mean and the 
range of these measures can be used as features. An average of the 
four different directions θ of these measures can be used as 
textural features. Another option is to use just one direction, 
depending on the application. 

Methods 
We investigated six different inkjet printer models in our printer 
bank. These printers are shown in Table 1. There are two identical 
units for each printer model. Inkjet printers have different print 
modes depending on their printing speed. These modes affect the 
characteristics of the printed document significantly. So we used 
the default modes for each printer we investigated. The only 
exception was Lexmark Z25. As the print quality was not 
acceptable for the default mode, we selected the next better mode 
for this printer. 

 
Figure 1. Steps followed in textural feature selection for printer classification. 

 
Figure 2. Character set printed on the test page. 

Figure 1 shows the steps followed in textural feature selection for 
printer classification. The character set printed on the test page we 
used for printer identification is shown in Fig. 2. Because we 
observed instability in the characters on the border areas, the three 
left-most and right-most columns as well as the upper-most and 
lower-most rows of the character set were not included in the data 
set. The characters consist of 12 point Arial capital ‘I’ letters. We 
extracted 42 characters for each specific printer model. 

The document was scanned at 2400 dpi with 256 gray levels. The 
skew of the scanned pages were checked and if the skew was not 
acceptable, the scanning process was repeated. Next, the 
characters were extracted for each printer. The average size of 
each extracted character is about 268 × 35 pixels. We calculated 
the textural features of each character by using Haralick et al’s 
methods.7 For the angle θ, we used values of 0° and 90°. For the 
distance d parameter of the GLCM, we used values of 
(1,2,4,...,128) for angle 90°, and we used values of (1,2,4,8,16) for 
angle 0° because of the size limitations of the images. After the 
features were calculated, we first checked the stability of each 
feature within a printer model. This is achieved by comparing the 
features of the two identical units of each printer model. Assume 
that we would like to check the in-class stability of feature f for 
printer model PrA where we have two identical units PrA1 and 
PrA2. Then our cost function Ψ for in-class stability will be: 
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This cost function compares the variances and the normalized 
separation of the means of the features. We eliminated features 
that have a cost value of greater than 2.0. We also observed 
correlation between the textural features, so we selected a subset 
of them by looking at their stability among same models. This 
subset consisted of features f2, f3, f9, f10, and f14. 

After we refined our feature set by checking in-model stability, we 
applied stepwise discriminant analysis (SDA) to the refined feature 
set.8 The objective of the SDA is to find the best features within a 
feature set that separate different classes from one another while at 
the same time keeping each cluster as tightly packed as possible. 
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Specifically, SDA starts with the full set of all features, calculates 
the significance level of each feature and removes the feature with 
the lowest significance. This process continues until all the 
features are above a predefined significance. 

 
Figure 3. Scatter plot of the data for the six inkjet printers with respect to the 
entropy and maximal correlation coefficient features. 

 
Figure 4. Scatter plot of the data for the six inkjet printers with respect to the 
contrast and maximal correlation coefficient features. 

Preliminary Experimental Results 
We used the methodology described in the previous section to 
select four features from the textural feature set. The most 
significant features obtained from the discriminant analysis for 
classification of the printers are entropy (θ = 90°, d = 2), contrast 
(θ = 90°, d = 2), and maximal correlation coefficient (θ = 90°, d = 
1, and θ = 90°, d = 16). In Fig. 3, we show the scatter plot of the 
data points plotted with respect to two of the features. In this case, 
there are four clusters. The three HP printers fall onto each other, 
this may be because a similar printer technology was used to 
manufacture these printers. But all of the other printers were 
clustered nicely. We show the scatter plot of the data for the 
remaining two features in Fig. 4. This is the case where the three 

HP printers are separated the most. Even in this case, there is a 
considerable overlap between printer model HP3420 and the other 
two HP printers. This supports the idea that these printers have 
similar technologies. 

Conclusion 
We investigated the applicability of textural features for 
classification of inkjet printers. Specifically, we focused on 
textural features introduced by Haralick et al.7 We produced a 
feature pool by varying different parameters of these features and 
selected most significant features that perform best classification. 
This is done by first eliminating the unstable features within a 
printer model, and then applying stepwise discriminant analysis. 
We found four features which are the most significant for 
classification of the inkjet printers in our printer bank. 
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