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Abstract 
The resistance of a thermal print head’s heating element typically 
changes with temperature. This property is exploited to estimate 
the temperature of the element. The proposed method employs a 
model for the temperature rise when power is applied to the 
element in conjunction with a model for mapping the resistance to 
temperature. The parameters of the model are learned from the 
resistance measurements using a maximum likelihood estimator. 
An analytical expression is obtained for the bias in the estimated 
parameters. Results for synthetic and real data show that the 
proposed methods estimate the resistance-temperature mapping 
with a high degree of accuracy. 

Introduction  
The resistivity of the material chosen for fabricating the heating 
elements of a thermal print head typically exhibits some 
temperature dependence. This property has been utilized in the 
past by the NEC/Susumu thermal print head (TPH) for actively 
controlling the heating element to maintain a desired temperature.1 
Other potential applications include the compensation of TPH-to-
TPH variability, and the estimation of the thermal model 
parameters for improved thermal history control.2 

All of these applications require the resistance-temperature 
mapping of the heating element in its operating temperature range, 
which is much higher than the maximum allowable heat-sink 
temperature. We propose to estimate this mapping from resistance 
measurements made over a limited range of heat-sink temperatures 
of the TPH. The method employs a model for predicting the 
element’s temperature as a function of applied power in conjunc-
tion with a model for the resistance-temperature mapping. This 
model-based approach is capable of learning the functional 
relationship between the element’s resistance and its temperature 
for temperatures much higher than the maximum allowable heat-
sink temperature. A maximum likelihood estimator (MLE) is 
proposed to learn the model parameters from the measurements. 
We show that the MLE for jointly estimating the temperature 
model and resistance-temperature mapping is biased. We derive an 
analytical expression for this bias and identify the factors that 
contribute to it.  

Experimental Apparatus 
The resistance measurement apparatus is shown in Fig. 1.  

This is a classical “bridge” configuration. The resistors R
1
 and R

2
 

are chosen to be small to minimize any RC time-constant delays in 
the measurement system, and the resistor R

b
 is chosen to 

approximately match the TPH resistance. When current is provided 
to an element of the TPH, the currents in the two arms of the 

bridge are nearly equal, and the voltage sampled by the op-amp is 
nearly zero. Batteries supply all electrical power to the circuit in 
order to minimize noise, and all supply voltages are regulated (not 
shown). 

 
Figure 1. The above figure shows a schematic of the resistance measurement 
apparatus 

The op-amp is chosen to have a high gain-bandwidth product and 
low noise, to allow for high-speed measurements of the 
instantaneous resistance. The op-amp’s gain (G) and input offset 
(V

off
), as well as the values of R

1
 and R

2
 are carefully calibrated 

using fixed, precision resistors in place of the TPH. To eliminate 
the effects of temperature drift on the resistors and the op-amp, the 
entire circuit board is kept in an insulated box maintained at a 
constant temperature . 

The output of the op-amp (V
out

) and the input voltage (V
in
) are 

recorded on a digitizing oscilloscope for analysis. The 
instantaneous resistance is computed as  

R  
GR2RbVin  R2 R1  Rb Vout  GVoff  

GR1Vin  R1  Rb  Vout  GVoff  
  (1) 

The TPH is placed in an oven and is allowed to come to thermal 
equilibrium before any measurements are made. This allows for 
accurate measurement of the initial temperature of the heating 
elements before application of power. Resistance measurements 
are made for a variety of initial heat-sink temperatures of the TPH 
after applying power for a fixed duration of time (“on-time”).  

Heating Element Temperature Estimation 
Let T = f(R) denote the unknown function that maps the resistance 
of the heating element R to its temperature T. The function f(⋅) is a 
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characteristic of the material used to construct the heating 
elements. We are interested in estimating f(⋅) from the resistance 
measurements. In the process of measuring the resistance, some 
current has to be supplied to the heating element raising its 
temperature. Consequently, the temperature at which the resistance 
measurement is made is not known even though the initial 
temperature is known. Therefore a model is needed to predict the 
temperature of the heating element. The temperature rise of the 
heating element relative to the heat-sink is proportional to the input 
power 

,APTT s +=   (2) 

where T
s
 is the heat-sink temperature, P is the applied power for a 

fixed duration and A is a temperature model parameter that 
converts applied power to temperature. If the measurements are 
made for several on-times, a different value of A is used in Eq. (2) 
for each on-time. The measurement triplet is denoted as {R

i
,T

si
,P

i
}, 

where the subscript i ranges from 1 to the number of measurements 
N. The relationship between the measurements is obtained from 
Eq. (2) as: 

 ( ) .isii APTRf +=  (3) 

Assuming the measurements are corrupted by Gaussian noise, the 
MLE for the function f(⋅) and A is obtained from Eq. (3) as: 

 ( )[ ]
( )

( )( ) ,1minargˆ ,ˆ 2
2

 ,
∑ −−=⋅

⋅ i
isii

iAf
APTRfAf

σ
  (4) 

where σ
i
 is the standard deviation of the computed temperature 

difference arising from noise in the measurement triplet. In 
practice, the noise on the resistance measurements (σ

R
) dominates 

and we can approximate σ
i
 as: 

( ) .Ri dR
Rdf σσ =   (5) 

Substituting Eq. (5) into Eq. (4), we obtain: 

( )[ ]
( ) ( )( )

( )( ) .1minargˆ ,ˆ 2
2 ,

∑ −−=⋅
⋅ i

isii
iAf

APTRf
dRRdf

Af   (6) 

We formulate non-parametric models for f(⋅) in the follow-ing 
sections to facilitate the optimization problem posed by Eqs. (4) 
and (6).  

Polynomial Approximation for f(⋅) 
A pth order polynomial representation for f(⋅) is given as: 

f(R) = x
p
Rp + x

p-1
Rp-1 + … + x

0
,  (7) 

where x
j
, j = 0,…p, are the polynomial coefficients. We construct 

the following matrices and vector from the N measurements and 
the p+1 unknown polynomial coefficients: 
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 The solution to Eq. (4) is given as: 
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where W  is a diagonal weight matrix constructed as: 
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and D  is defined as: 

D = [R − P] (11) 

The solution to Eq. (6) is more difficult since the weight matrix 
W  depends on the derivative of the function we are trying to 
estimate. We solve this problem by estimating the parameters 
iteratively using Eq. (8). At each iteration, the weight matrix is 
recomputed using the derivative of the function estimated in the 
previous iteration in Eq. (5). 

Piecewise Polynomial Approximation for f(⋅) 
A global polynomial is not very effective in fitting local features of 
the function f(⋅). Increasing the order of the polynomial to improve 
the fit typically does not help and usually results in numerical 
instability. A better solution is to fit a number of lower order 
polynomials locally. Usually a piecewise linear approximation is 
good enough. The method of the previous section can be 
generalized to achieve this. Divide the domain of interest for the 
function f(⋅) into N

r
 regions. Let r = I(R) denote the index of the 

region that R falls into. All the matrices and vectors defined in Eqs. 
(8) and (10) are now denoted with a subscript r. For example, the 
matrix R

r
 is constructed using only the resistance measurements 

for samples i such that I(R
i
) = r, ∀i.  

The solution to Eq. (4) is given as: 
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The iterative solution to Eq. (6) may be performed in a fashion 
similar to that proposed in previous section. 

The function estimated by this method will probably be 
discontinuous at the region boundaries because no continuity 
constraints have been imposed on the polynomial coefficients. This 
can be mitigated by overlapping the region boundaries. 
Furthermore, once A is estimated, the unknown temperature 
associated with each resistance measurement can be computed 
using Eq. (2). A spline may then be fitted to the resistance-
temperature pairs to obtain the final continuous estimate of f(⋅). 

Bias in the Temperature Scale Estimate 
The joint estimation of f(⋅) and A tends to bias the temperature 
scale. The bias in the parameter estimates given by Eq. (4) is 
difficult to compute directly since the estimated function f(⋅) can 
take on an arbitrary shape. We simplify the problem by assuming 
that our estimates of f(⋅) and A differ from their true values by an 
unknown scalar s as follows 

( )( ) .1  where,)(ˆ

ˆ

∑=+−=
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i
sisss T

N
TTTRfsRf

sAA
        (14) 

Then it can be shown that the expected value of s is given as 
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The bias in ˆ A  is computed from Eq. (14) and (15) as 
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Figure 2. Synthetic Resistance measurements for various heat-sink 
temperatures and applied powers. Solid line shows true values and “crosses” 
show simulated measurements 

Results 
First consider a synthetic example in which we have access to the 
true model parameters so that we can assess the estimation 
accuracy of the different methods. Figure 2 shows the true values 
and simulated measurements of the resistances for 4 different heat-
sink temperatures and 15 different power levels with A = 300°C/W 
and the ground truth f(⋅) shown in Fig. 3. Gaussian noise (σ

R
 = 2Ω) 

was added to the measurements. The average SNR for this data is 
21. From Eq. (16), the expected value of A is 286 (a bias of -
14°C/Watt) if the shape of the estimated function is the same as the 
ground truth. 

Figure 3 compares the global and piecewise polynomial methods. 
In each case, the result of the second iteration is shown where the 
weight matrix has been recomputed using the derivative of the 
function estimated in the first iteration. We see that the global 
polynomial is not a very good fit even for higher orders (3rd order 
shown) and ˆ A =263°C/W is quite a bit lower than the true value. 
This was by design since the ground truth function had local 
features that are difficult to model with a global polynomial. On 
the other hand, the piecewise polynomial method reproduces the 
function accurately with ˆ A =294°C/W. The fit shown in Fig. 3 was 
obtained by dividing the resistance measurements into eight non-
overlapping regions such that each region had the same number of 
samples. Each region used a first order polynomial. Choosing the 
regions in this manner has the advantage that we automatically get 
more definition for the unknown function in regions where there 
are more resistance measurements. The final estimate of f(⋅) is 
obtained by reconstructing the temperature using ˆ A  in Eq. (2) and 
fitting a second order spline to the measurement samples. 

 

 
Figure 3. Estimated f(⋅) using global and piecewise polynomial methods. The 
reconstructed temperature for the resistance measurements are shown as 
“crosses” (global polynomial) and “circles” (piecewise polynomial) 
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Figure 4. Piecewise linear fits to data collected on two elements of a Toshiba 
TPH separated by 64 elements. Â = 310°C/W and 305°C/W for the two 
elements. 

Figure 4 shows the piecewise linear fits to data collected from two 
heating elements of a Toshiba TPH. The elements were separated 
by 64 pixels spaced at 306dpi. Five different heat-sink 
temperatures (30°C, 50°C, 70°C, 90°C, 110°C) and nine different 
power levels ranging from 0.04W to 0.21W were used for the 
measurements. The fits were obtained using 4 regions with 75% 
overlap. The estimated values of A were 310°C/W and 305°C/W. It 
is not possible to assess the accuracy of these estimates since the 
ground truth is not available for this data. However, the fitting 
error yields an estimate for the temperature noise of 2.5°C, which 
is used to compute the SNR (130) and bias in ˆ A  of approx. -1%. 

Note that the temperature predicted for any resistance value is 
different for the two elements. However, if the material properties 
are similar for the two elements, the change in resistance for a unit 
change in temperature should be similar. Indeed, when the 
functions are plotted with respect to normalized resistances (not 
shown), there is good agreement between the two estimates and the 
differences are comparable to the noise. 

Conclusion 
We have shown that the simultaneous estimation of the 
temperature scale and resistance-temperature mapping is biased for 
the MLE. The bias may be reduced by lowering the measurement 
noise and/or increasing the range of the heat-sink temperatures for 
the resistance measurements. The piecewise linear method is best 
suited to reducing the model mismatch and bias since it can 
conform to any local feature of the resistance-temperature 
mapping. The model-based approach successfully estimates this 
mapping for temperatures much higher than the maximum heat-
sink temperature used in the measurements. 

A parametric model for the resistance change with temperature 
derived from the underlying physics of semiconductors3 may be 
used for f(⋅). If the model accurately describes the heating 
element’s material characteristics, it has the advantage of reducing 
the number of parameters that need to be estimated. Consequently, 
fewer measurements will be required to achieve the same accuracy 
as that of the non-parametric methods. 
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