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Abstract  
Lacunarity analysis is a method for describing fractal patterns 
with spatial or textural variations. This method has also been 
applied to nonfractal and multifractal patterns such as texture, 
roughness, and porosity. In this paper, an approach is presented for 
quantitatively describing the nature of particle dispersion in toner 
by analysis of digitized photomicrographs with fractal dimension 
and lacunarity analysis. Image analysis of computer synthesized 
dispersion profiles varying in such properties as mean agglomerate 
size, agglomerate size distribution, loading, and spatial homo-
geneity is presented. We find that agglomerate size can be 
measured by changes in the fractal dimension as determined by 
modified Richardson plots obtained by a box counting method. 
Additionally, we find that the spread in the agglomerate size 
distribution and the spatial homogeneity of the dispersion are 
correlated with lacunarity as measured by the sliding box 
algorithm. 

Introduction 
Toner particles are a mixture of several relatively incompatible 
materials. At the very least, a modern toner contains resin, wax, 
pigment, and charge control agent. It is well established that 
several performance characteristics of the toner depend on how 
well the pigment,1 wax,2 and charge control agent3 are dispersed in 
the resin matrix. As a result, the level of dispersion of these 
components is crucial in the development of new toners and new 
toner processes. Controlling these dispersions is not simple. 
Process conditions that are beneficial to the pigment dispersion can 
be different from the conditions required for the optimum 
dispersion of wax or charge control agent.  

Most commonly, the dispersions of these materials are not directly 
measured but are evaluated indirectly based on their effects on 
toner performance or other physical properties. Performance 
characteristics such as image background or photoconductor 
filming are indicators of dispersion quality as are physical 
properties such as the dielectric constant or the triboelectric 
charge.  

Direct measurement of dispersion is usually taken from 
photomicrographs. These can be either from a toner smear under 
an optical microscope, or a section from transmission electron 
microscopy (TEM). Evaluation of the dispersion from 
photomicrographs can be made by visual comparison with a set of 
standard photos. Alternatively, dispersion parameters such as 
agglomerate size can be measured either manually, or by software 
operating on digitized photomicrographs. 

Mathematical methods have been developed over the past 20 years 
specifically to describe complex systems. Mandelbrot’s introduc-
tion of fractal geometry4 in 1982 has since been applied to various 
natural systems whose geometry lies somewhere between the 
topological dimensions of Euclidean geometry. More recently, 
lacunarity analysis5 has been applied to further describe systems 
with the same fractal dimension but very different visual 
appearance or texture. The work described in this paper is an effort 
to apply fractal geometry and lacunarity analysis to quantitatively 
describe pigment dispersion in toner.  

Methods 
Images used in this analysis are 800 × 600 pixels. The images are 
digitized over an adjustable threshold so that every pixel is either 
black (image) or white (background).  

Fractal Analysis 
The fractal dimension is a measure of the ratio of increasing detail 
with increasing scale. Analysis of the fractal nature of the images 
is performed by the standard box counting method. In this method, 
grids of sizes ranging from 2 to 64 pixels in length are placed over 
the image and the numbers of boxes that contain image pixels are 
counted. The fractal dimension (D

B
) is negative the slope of the 

least squares regression line of the log-log plot of box count as a 
function of box size (modified Richardson plot). These analyses 
are completed with the aid of ImageJ software, a public domain 
image analysis package.6 

Lacunarity Analysis 
Lacunarity is a scale dependent measure of heterogeneity. It is a 
measure of the “gappiness” or visual texture of an image. Analysis 
of the lacunarity is performed by the gliding box algorithm. In this 
method, boxes of size ranging from 1 to 270 pixels are scanned 
over the image at overlapping intervals. The number of image 
pixels contained in the box is counted at each step. Once the entire 
image is scanned, the average number and standard deviation of 
pixels for that box size are recorded. Lacunarity is calculated as  

Λε = 1 + (σε/µε)
2  (1) 

where ε is the scale defined as the box size divided by the image 
size, Λε  is the lacunarity at scale ε, σε  is the standard deviation of 
the pixel count at scale ε, and µ  is the mean pixel count at scale ε. 
These analyses are completed with a plug-in for ImageJ called 
FracLac.7 
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Simulated Photomicrographs 
Fractal and lacunarity analyses are performed on simulated 
photomicrographs. In this way, the parameters that affect 
dispersion can be accurately and independently controlled. The 
image analysis results are then compared to the known differences 
in the images. Four dispersion related variables are identified. 
These are the mean particle size (M), the particle size distribution 
(D), the spatial distribution (XY), and the total particle 
concentration or load (L).  

Images are computer generated based on these four input variables. 
The mean particle size is defined as the diameter of the particle in 
pixels. The particle size distribution is defined as the spread in 
particle diameter in pixels such that a value of 1 indicates uniform 
particle diameters and a value of 10 produces a total spread of 10 
pixels normally distributed about the mean. Similarly, the spatial 
distribution is generated as a normal distribution with a value of 1 
indicating total uniformity and higher values generating greater 
spatial variation. While the program is designed to control spatial 
distributions in the x and y directions independently, these 
parameters are varied together in the images generated here. 
Finally, the particle load is taken as the total percent of pixels 
containing particles such that a load of 5 would generate an image 
containing 5% particles by area. No effort is made to prevent 
particle-particle contact or overlap in the simulated images. 

Results and Discussion 
Fractal Analysis 
The fractal analyses of three images generated with identical 
dispersion input parameters are nearly super imposable. As a 
result, any differences found in the fractal analyses varying 
parameters can be interpreted as significant. Also, no differences 
are observed in the fractal plots of images varying the particle size 
distribution from 1 to 20, indicating that the fractal dimension is 
independent of the particle size distribution. While slight 
differences are observed in the fractal plots of images varying only 
spatial distribution (especially at larger box sizes) this parameter is 
nearly independent of fractal dimension as well. 

Significant differences are observed in the Richardson plots of 
images varying mean particle size and particle load. These plots 
are not perfectly linear indicating that the images are not pure 
fractals. Rather, the plots indicate two linear regions. The fractal 
dimensions in the lower box size region correlate well with the 
mean particle size. These results are summarized for images 
varying M with D = 1, XY = 1, and L = 5 in Table 1. 

In the cases of varying particle load, differences in the fractal 
dimension are minor while differences in the Y axis intercept 
correlate well with the load. These results are summarized for 
images varying L with M = 5, D = 1, and XY = 1 in Table 2. 

In summary, the fractal analysis results are for the most part 
independent of particle size distribution and spatial distribution 
variables. The fractal dimension at low box size is mostly 
dependent on the mean particle size. Certainly, in cases where the 
toner formulator is controlling the particle load, any differences in 
fractal dimension at low box size would be indicators of 
differences in mean particle size. 

Lacunarity Analysis 
Differences in the distribution variables dominate the lacunarity 
analysis. Plots of Lacunarity (Λ) versus scale (ε) usually 
demonstrate a peak at low scale (near ε = 0.01), a minimum at 
higher scale (ε between 0.01 and 0.1) and increasing values above 
ε = 0.1. The low scale peak is independent of load and spatial 
distribution. The low scale peak varies linearly with the particle 
size distribution. The variation of the low scale peak with particle 
size distribution for images with M = 5, XY = 1 and L = 5 are 
shown in Table 3. 

The lacunarity at high scale is independent of all of the dispersion 
parameters except spatial distribution. The differences are 
particularly evident when choosing an arbitrary high scale value (ε 
= 0.333). These values are summarized in Table 4 varying XY 
with M = 5, D = 1, and L = 5. 

Table 1: Mean Particle Size and Fractal Dimension 
Mean Particle Size DB at Low Box Size 

1 0.48 
3 0.84 
5 1.03 
7 1.09 
9 1.15 

 
Table 2: Particle Load and Fractal Measures 

Load(%) DB Y Intercept 
1 1.01 3.64 
3 1.05 4.12 
5 1.11 4.36 
7 1.12 4.50 
9 1.17 4.62 

 
Table 3: Size Distribution and Low Scale Lacunarity Peak 

Size Distribution Low Scale Peak 
1 1.55 
3 1.60 
5 1.66 
7 1.73 
9 1.77 

 
Table 4: Spatial Distribution and Lacunarity 

Spatial Distribution Lacunarity at ε = 0.333 
1 1.28 
3 1.48 
5 2.02 
7 2.74 
9 2.93 

 
 
In summary, the lacunarity analysis results are separated into low 
scale peak and high scale values. The low scale peak is 
independent of load and spatial distribution while reflecting mean 
particle size and particle size distribution information. The high 
scale values reflect differences in spatial distribution independent 
of all other variables. 
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Conclusions 
Pigment dispersion is defined according to four parameters. These 
parameters are independently controlled in computer simulated 
photomicrographs and analyzed by fractal and lacunarity methods. 
The mean particle size can be determined by the fractal dimension 
at low box size independent of size distribution and spatial 
distribution parameters. The size distribution can be determined by 
the lacunarity peak at low scale and the spatial distribution can be 
determined by the lacunarity value at high scale. These methods 
can be used to assist toner formulators in achieving optimum 
pigment dispersions. 
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