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Abstract  
Three kinds of techniques have been developed on electrostatic 
classification of particle size. The first utilizes linear electrostatic 
traveling field. A particle conveyer consisted of parallel electrodes 
was constructed and four-phase traveling electrostatic wave was 
applied to the electrodes to transport particles on the conveyer. 
Particles were classified with size under the voltage application of 
appropriate frequency based on the feature that the direction of 
particle transport was changed depending on the frequency of the 
traveling wave and the particle diameter. The second technique 
utilizes a circular electrostatic conveyer similar with the mass 
spectroscopy. Particles were classified with size because a locus of 
the particle in centrifugal field depended on the weight of the 
particle. The third is the combination of the linear conveyer and an 
electrostatic separation roller located at the end of the conveyer. 
Small particles were attached onto the roller charged by a charger 
roller. These techniques have been expected to be utilized to the 
classification of the particle size and a charge-to-mass ratio of 
toner and carrier particles used in electrophotography. 

Introduction 
Electrostatic traveling-wave transport of particles has been studied 
and fundamental performances have been clarified by an 
experimental and numerical investigation, because it has a 
potential to realize a sophisticated particle supplier in 
electrophotography.1,2 The technology will be applied not only for 
an electrophotography developer3-13 but also for electronic,14 
chemical, and biochemical applications,15 because it has the 
advantage that the transport can be controlled through electrical 
parameters instead of mechanical means and therefore it is free 
against contamination of impurities and the mechanical vibration. 
In addition to these applications, the authors are developing some 
techniques to classify particle size utilizing the electrostatic 
traveling wave. Three methods are introduced in this report. 

The first one utilizes an interesting finding of the traveling-wave 
transport experiment that particles were transported in the direction 
of the traveling wave propagation (forward direction) at low 
frequency, otherwise at relatively high frequency particles 
transported backward increased and a transition frequency from 
the forward to the backward transported region depended on the 
particle size, i.e., although small particles were transported to the 
forward direction even at relatively high frequency operation, large 
particles delayed and moved backward even at lower frequency.1,2 
This feature suggested that particles could be classified with size 
with the application of traveling wave of an appropriate frequency. 

The second method utilizes a principle of the mass spectroscopy. 
When particles are introduced in circular traveling-wave field 
created by the electrostatic circular conveyer, particles were 

classified with size because a locus of the particle depended on the 
weight of the particle due to the centrifugal force. 

The third is the combination of the linear conveyer and an 
electrostatic separation roller located at the end of the conveyer. 
Small particles were attached onto the roller charged by a charger 
roller but large particles fell down from the conveyer, and thus the 
classification of the particle size was realized. 

The effectiveness of these new techniques have been demonstrated 
with carrier particles used in the magnetic brush development 
system of electrophotography and these have been expected to be 
utilized not only to the particle supplier but also to the 
classification of the particle size and a charge-to-mass ratio of 
toner and carrier particles used in electrophotography.16 

Linear System 
Experimental Set-Up 
A conveyer and a power supply used for the linear classification 
are shown in Fig. 1.1,2 The conveyer consists of parallel copper 
electrodes, 0.5 mm width and 1.0 mm pitch, etched by 
photolithography on a plastic substrate, 120 mm width and 250 
mm length, as shown in Fig. 2. The surface of the conveyer is 
covered with an insulating film made of acetate rayon (3M, 810-
18D) to prevent from electrical breakdown between electrodes. 

Traveling-wave propagation is achieved utilizing four amplifiers 
(Matsusada Precision, HOPS-1B3) and five function generators 
(Iwatsu, SG-4105), one of which is used to control phase-
differences of the other four generators. Rectangular voltage of 
±800 V, which is a limit against an insulation breakdown between 
electrodes, was applied to electrodes. 
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Figure 1. Electrostatic linear particle conveyer and power supply 
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Figure 2. Photograph of linear particle conveyer 

Table 1: Specification of Particles 
 ACM235 ACM288 ACM2107
averaged diameter, µm 29.7 72.6 106.3 
standard deviation, µm 5.3 23.3 13.1 
density, 103 kg/m3 3.50 3.62 3.50 
resistivity (@10 V), Ωm 1×109 3×109 8×107 
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(c) ACM288 
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(d) ACM 2107 
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Figure 3. Photograph of particles and distributions of particle diameter 

Three kinds of spherical carrier particles made by the polymeri-
zation method (Toda Kogyo) were used for experiments.17-19 
Specifications of particles are listed in Table 1 and photographs 
and distributions of particle diameters are shown in Fig. 3. 
Distribution of particle diameters was derived by an optical 
method of randomly selected each 3,000 particles. 

Results and Discussion 
At low frequency operation, particles were transported to the 
common direction with that of the traveling wave and the motion 

was almost synchronized with the wave speed. However, at high 
frequency some particles delayed to the wave and moved to the 
opposite direction. To examine characteristics associated with the 
direction of the particle transport, the following experiments were 
carried out. First, cloud of 0.5-gram particles was mounted at the 
center of the conveyer and ±800 V rectangular wave was applied 
to electrodes. Then we measured the weight of particles 
transported forward and backward in 30 seconds, where ‘forward’ 
is the same direction with that of the traveling wave and 
‘backward’ is the opposite direction. 

Figure 4 shows the measured relative weight of forward 
transported small particles ACM235 and the large particles 
ACM2107. The results indicated that the relative weight of 
forward transported particles depended not only on the wave 
frequency but also on the particle diameter, that is, at an 
appropriate frequency small particles may be transported forward 
but large particles may be transported backward. To confirm this 
hypothesis we prepared mixed particles of ACM235 and 
ACM2107, the number of each one being the same. Under the 
condition of the optimum frequency, 140 Hz in this case, a 
significant classification was realized as shown in Fig. 5. We can 
also confirm the classification by the photograph shown in Fig. 6. 
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Figure 4. Rate of forward transported particles with respect to frequency of 
traveling wave 

Figure 7 shows another evidence on the particle classification with 
the particle ACM288 whose diameter was distributed in wide 
range (refer to Table 1). The classification was also realized as 
shown in Figs. 7 and 8. 

Circular System 
Experimental set-up 
A circular system is based on a principle of the mass spectroscopy. 
When particles were introduced in circular traveling-wave field 
created by a circular conveyer shown in Fig. 9(b), particles would 
be classified with size because a locus of the particle depended on 
the weight of the particle due to the centrifugal force. The circular 
conveyer consisted of three segments of a quarter-section electrode 
shown in Fig. 9(a), 360 mm outer diameter, 240 mm inner 
diameter and therefore 60 mm effective width. The width and pitch 
of electrode were 1.0 mm and 2.0 mm, respectively, at the inner 
circumference and 1.5 mm and 3.0 mm at the outer circumference. 
Particles used for experiment was the same with those used for the 
linear system, i.e., mixed of the small particle ACM235 and the 
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large particle ACM2107. Particles were settled initially on the end 
of the circular conveyer as shown in Fig. 9(b) and then four-phase 
electrostatic traveling wave, rectangular of ±800 V, was applied to 
the electrodes. 
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(a) 120 Hz 
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(b) 140 Hz 
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(c) 160 Hz 

Figure 5. Distributions of particle diameter in forward and backward 
transported particles (ACM235+ ACM2107 mixed particles) 

 
(a) forward transported       (b) backward transported  

Figure 6. Photographs of forward and backward transported particles 
(ACM235+ACM2107 mixed particles, 140 Hz) 
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Figure 7. Distributions of particle diameter in forward and backward 
transported particles (ACM288, 140 Hz) 

 
(a) forward transported       (b) backward transported  

Figure 8. Photographs of forward and backward transported particles (ACM 
288, 140 Hz) 
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Figure 9. Centrifugal circular separation conveyer 

Results and Discussion 
At the first place, the optimum frequency for the classification was 
investigated. Figure 10 shows abundance ratio of particles reached 
at the end of the circular conveyer, a portion marked ‘R’ in Fig 
9(b). The classification was most effective at 25 Hz. 

Figure 11 shows the measured relative number of circulated 
particles that reached to the other end of the conveyer at the 
optimum frequency, 25 Hz, operation. We can see that large 
particles were circulated and reached to the end of the conveyer 
and small particles were flicked out of the conveyer, and thus the 
classification was achieved. 
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Figure 10. Performance of classification with respect to frequency - 
abundance ratio of designated particles reached at the end of the conveyer 
(ACM235+ ACM2107 mixed particles) 
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Figure 11. Distributions of particle diameter in initial and circulated particles 
(ACM235+ ACM2107 mixed particles, 25 Hz) 

 
 
Roller System 
Experimental set-up 
The last is a roller system that utilizes the balance of Coulomb 
force and the gravitational force. It was composed of two parts. 
One was a parallel electrode array that transported particles by 
virtue of the electrostatic traveling wave, the same as the linear 
conveyer, and another was a charged separation roller located on 
the upper side of the array, 2 mm gap to the conveyer, as shown in 
Figs. 12 and 13. Particles mounted on the left side of the linear 
conveyer were transported to the right side where the separation 
roller was approximated. Particles used for experiment was the 
same with those used for the linear system and the circular system, 
i.e., mixed of the small particle ACM235 and the large particle 
ACM2107. Because the Coulomb force is larger than the 
gravitational force for small particles, small particles are attached 
to the roller but, on the other hand, large particles are run over 
from the right end of the linear conveyer. Thus the electrostatic 
classification of particle size is realized. 

In this system, a biased charger roller was used to charge the 
separation roller.20,21 The charger roller consists of a center shaft 
made of steel and electroresistive elastmer bulk rubber (outer 
diameter: 11.5 mm). The roller was in contact with the separation 
roller (outer diameter: 30.0 mm) and micro-discharge controlled 

the charge of surface insulation film on the separation roller after 
charge cancellation by attached particles, repeatedly. The surface 
charged voltage V of the separation roller due to micro-discharge is 
determined by the Paschen’s law.20 

2)312/2.6( += rdV ε
 (1) 

where d (µm) is the thickness of the insulator film on the 
separation roller, 110 µm and ε

r
 was the relative dielectric 

constant, 3.0. 
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Figure 12. Roller separation system 
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Figure 13. Photograph of roller separation system 

Results and Discussion 
Figure 14 shows photographs of initially settles particles, particles 
attached to the roller, and particles non-attached to the roller and 
run over from the right end of the linear conveyer, in case of 1.0 
kV surface potential on the separation roller. In this experiment, 
low-frequency wave, 5 Hz, was applied to the linear conveyer, 
because transport of particles was almost synchronized with the 
traveling wave at this frequency. Because particles were charged 
on the parallel electrodes due to the static contact and friction to 
the insulation film on the conveyer,2 small particles were attached 
electrostatically on the separation roller against the gravitational 
force. This feature was evaluated quantitatively as shown in Fig. 
15(a). Figure 15(b) shows the result in case of 0.5 kV surface 
potential on the separation roller. Sufficient classification of 
particles size was also demonstrated, although the performance 
was less than or comparable to the case of 1.0 kV surface voltage. 
It will be susceptible to optimize design and operational 
parameters, such as frequency of the traveling wave, traveling 
length that determines charge of particle, surface voltage, gap, and 
rotational speed. 
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Figure 14. Photograph of initial, attached to the roller, and non-attached 
particles (ACM235+ ACM2107 mixed particles, 25 Hz, surface potential on 
separation roller: 1.0 kV) 
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(a) surface potential on separation roller: 1.0 kV 
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(b) surface potential on separation roller: 0.5 kV 

Figure 15. Distributions of particle diameter in initial, attached to the roller, 
and non-attached particles (ACM235+ ACM2107 mixed particles, 25 Hz) 

Concluding Remarks 
Three techniques have been developed on electrostatic 
classification of particle size. 

1. The first one utilizes linear electrostatic traveling field. Four-
phase traveling electrostatic wave was applied to the particle 
conveyer consisted of parallel electrodes to transport particles 
on the conveyer. Particles were classified with size under the 
voltage application of appropriate frequency based on the 
feature that the direction of particle transport was changed 

depending on the frequency of the traveling wave and the 
particle diameter. 

2. The second technique utilizes a circular electrostatic conveyer 
similar with the mass spectroscopy. Particles were classified 
with size because a locus of particle in the centrifugal field 
created by the circular conveyer depended on the weight of 
the particle. 

3. The third is the combination of the linear conveyer and an 
electrostatic separating roller located at the end of the 
conveyer. Small particles were attached onto the roller 
charged by a charger roller as a balance of the Coulomb force 
and the gravitational force. 

 
These techniques have been expected to be utilized to the 
classification of the particle size and a charge-to-mass ratio of 
toner and carrier particles used in electrophotography. 
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