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Abstract 
A diagnostic technique has been developed for rapid character-
ization of optical and scan properties in optical printers. The 
technique provides simultaneous real-time measures of beam 
profiles, including spot size, centroid and energy, at all or multiple 
positions along the print scan line for dynamically moving beams 
in laser printers or for static optical beams in LED printers. As 
such, it facilitates adjustments of f-θ lenses in laser printheads with 
air bearing spindles without the need to stop the polygonal 
scanning mirror. Also, since an entire raster is measured at once, 
measurements of the scan line bow and linearity characteristics 
are obtained in real-time. Polygonal scanner jitter characteristics 
can be measured in seconds. For LED printheads, it provides for 
optimal adjustment of lens/array assemblies, and for measurement 
of the many thousands of LEDs in seconds, yielding linearity, 
MTF, and power compensation values. When compared to 
conventional slit-scanning diagnostic methods, the 3σ measure-
ment accuracy for spot size is slightly less, but the 3σ centroid 
accuracy is improved, primarily because there are no moving 
parts. For instruments using this diagnostic technique, real-time 
performance yields up to a thousandfold increase in measurement 
speed, with corresponding reductions in test time, allowing for vast 
improvement in fabrication tools and in quality control and 
assurance in printhead manufacturing. 

Measurement Technique 
The measurement technique, illustrated in figure 1, uses coherent 
optical fiber bundles positioned at the measurement plane to 
transfer incident CW or pulsed optical beams to the image plane at 
the other end. The image plane is proximity focused to one or more 
cameras for profile image acquisition at the video rate of the 
camera. This technique allows for multiple positions to be 
monitored using a single camera, as opposed to conventional 
techniques using either multiple cameras at the respective 
measurement locations, or using a single camera or slit scanning 
instrument that is moved to the respective measurement locations. 
Also, the technique allows for real-time updates at the camera 
video rate. Figure 1a shows a design with fiber bundles arranged at 
arbitrary discrete positions along the print plane, specifically for 
Laser printhead diagnostics. Figure 1b shows a design for LED 
printheads, with a continuous array of bundles at the print plane, 
with small gaps between the bundles. (A mechanical shift of a few 
hundred microns is necessary to measure the LED spots incident in 
the gaps.) 

PLATEN SURFACE 

BUNDLES AT ARBITRARY POSITIONS 

IMAGE PLANE 

a. 

PLATEN SURFACE 

BUNDLES CONTINUOUS ALONG PLATEN 

IMAGE PLANE 

 b. 
Figure 1. Coherent optical fiber bundles positioned at the scan plane and 
brought together at the output plane for proximity focusing to a camera. 
Segmented design for laser printheads is shown in a, and the “continuous” 
design for LED printheads is shown in b. 

Platen Profiler Instrument Development 
Profilers have been developed using the designs of figure 1 for 
Laser and LED printheads. The sensors for these profiling 
instruments, called “Platen Profilers”, (patent pending) are shown 
in figure 2. Figure 2a shows a unit with 15 sensors, ~1mm ×3mm 
located on nominal 15mm centers along a 216mm scan line. A 
single 12-bit 15Hz CCD camera acquires the images at all the 
locations simultaneously.  Figure 2b shows a unit for LED 
printheads, with 26 sensors, 0.5mm × 8.7mm positioned end-to-
end providing 226mm coverage. In this case two 12-bit CCD 
cameras acquire the images at all the locations simultaneously at 
the 15Hz camera rate. The images are acquired using digital 
framegrabbers and the profiles are analyzed in real-time at rates up 
to 15 Hz on a PC. The 3σ accuracy for 1/e2 spot size is typically 
5% for a 100µm beam, and ±3µm for position. 

Laser Printhead Diagnostic 
A Typical measurement scenario for a Laser printhead is shown in 
figure 3. The laser driver generates a series of pulses to fire the 
lasers so the scanned beam is incident upon the respective sensors 
at the print plane. A laser drive pulse to generate a single spot is 
typically 10ns in duration, and there are numerous possibilities for 
the pulse sequence, depending on what characteristic is being 
measured. For example, a pulse sequence with 15 pulses with 
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appropriate spacing will produce a single spot on each sensor 
during one raster scan of the polygon (typically ~0.5ms), with the 
resulting profile data updated at the real-time camera video rate. 

Figure 4 shows an example video screen with 2 spots incident 
upon each sensor during a single raster scan of the polygon. The 
acquired spot images are processed to provide beam diameter, 
centroid position, and energy values. Real-time updates facilitate 
rapid adjustments of optics, such as f-θ lenses.  

 

 a. 

 b. 
Figure 2. Platen Profiler developed by Photon:  a) Discrete design for Laser 
Printheads; b) “Continuous” design for LED Printheads 
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Figure 3. Laser printhead measurement example. 

 
Figure 4. Laser printhead measurement example for Platen Profiler with 15 
discrete bundles at nominal 15mm spacing along the scan line and 2 spots on 
each bundle.  

 
Figure 5. Real-time measurement of Scan Bow and Linearity for a Laser 
Printhead. 

Additional parameters such as Scan Bow and Linearity are then 
derived from the collective profile parameters for quality control 
and assurance. Figure 5 shows a software screen that updates in 
real-time with results for Scan Bow and Linearity derived from a 
measurement where one spot is generated on each sensor. 

The duration of a laser drive pulse sequence for a single 
acquisition is equal to the camera video frame time, which for a 
15Hz video rate is 66.67ms. Thus, pulse sequences for spots from 
numerous raster scans of the polygon can be generated to measure 
characteristics such as Facet Jitter, Facet Tilt, etc. For example, to 
examine a single facet, a series of single-raster sequences spaced 
appropriately will generate multiple overlapping spots on each 
sensor, and the resulting pattern can be analyzed to provide a 
measure of the Facet Jitter. A continuous train of single-raster 
sequences will produce overlapping spots from all the facets, and 
this pattern can be analyzed for Total Facet Jitter. 

LED Printhead Diagnostic 
The real-time performance allows for adjustment of LED 
array/GRIN Lens assemblies. An example of a real-time software 
interface for this is shown in figure 6. Figure 6a shows a group of 
LED spots for the optimum focus condition, and figure 6b shows 
the same spots in an unfocused condition.  

When alignment is complete, it is possible to inspect all the LEDs 
in seconds or less. Figure 7 is an example showing the spots for ½ 
the LEDs turned on and measured in 66.7ms, yielding beam 
diameter, position, and power values. Other parameters, such as 
MTF/contrast, can also be derived, as shown in figure 8. Since 
there are gaps between the fiber bundles, it is necessary to perform 
a mechanical translation of either the LED printhead or the Platen 
Profiler to measure all the LEDs, but even with this requirement a 
complete characterization can be accomplished in seconds or less. 
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Figure 6. Real-time adjustment of LED array/GRIN Lens Assembly: a.) at 
focus and b.) unfocused. 

Conclusion 
The new optical diagnostic technique for optical printheads uses 
coherent optical fiber bundles to transfer CW or pulsed beam 
images at the print plane to one or more cameras for simultaneous 
measurement of the beams at all positions. Instruments based on 
this technique, called “Platen Profilers”, have been developed for 
characterizing Laser and LED printheads. 

The instrument for laser printheads is able to measure beams in a 
dynamically operating printhead without the need to stop the 
polygonal scanning mirror. Using this system the entire single 
raster scan or multiple raster scans can be acquired and analyzed at 
once, with a demonstrated update rate of up to 15Hz. This makes it 
possible to perform, for example, real-time dynamic adjustments 
of f-θ lenses in printheads with air bearing spindles or to measure 
the characteristics of polygonal scanners across the entire scan 
plane in fractions of a second. Since the entire raster scan is 
acquired at once, meaningful data can be obtained for any 
polygonal mirror speed. The instrument measures beam spot size, 
position, and power/energy, and a number of derived parameters 
including Scan Bow and Linearity, Scan Jitter, Facet Tilt, and 
more. 

The instrument for LED printheads can measure the entire print 
line at once, with the exception of the gaps between the fiber 
bundle segments that exclude approximately 2% of the total. Thus 
it is possible to perform real-time adjustments of the LED 
array/GRIN Lens assembly for optimum assembly. Due to the 
finite gaps between fiber bundles, final measurement and 
characterization for spot size, position and power values, and 

MTF/contrast for 100% of the LEDs requires a 2-step process that 
incorporates a slight mechanical translation. This requirement 
extends the measurement time to the order of a second. 

 

 
Figure 7. Software video screen showing beam spots for ½ of the LEDs 
(every other) in the LPH turned on. 

 

 

Figure 8. Software profile analysis for one row of the LEDs shown in Figure 7. 
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The speed of measurement of the new diagnostic technique allows 
for real-time adjustment of Laser and LED printhead optical 
assemblies The corresponding reductions in test time, up to a 
thousandfold compared to conventional techniques, also sets the 
stage for vast improvement in fabrication tools and Quality Control 
and Assurance in printhead manufacturing. 
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