
 

Some Characteristics on Human Visual Sensitivity for Spatial 
Frequency of Digital Halftone Images 
Shigeru Kitakubo and Yasushi Hoshino, Nippon Institute of Technology, Miyashiro, Saitama, Japan 

 

Abstract  
In this paper we show some experimental results of image 
recognition, and discuss them from the viewpoint of human visual 
sensitivity for spatial frequency. We have been interested in how 
we see digital halftone images which consists of halftone dots. 

Introduction 
Algorithms of converting a continuous-tone image into a binary 
high quality image are important in non-impact printing field. A 
great number of digital halftoning algorithms have been presented. 
Recently, FM screening has been extensively studied. In 1998 and 
1999 we discussed the relationship between the minimum dot size 
and the print quality considering the human visual sensitivity. 
Through these results we recognized the importance of halftone 
screening method, which is one of the most widely-used 
binarization methods in printing and publishing industry. In 2000 
and 2001 we discussed the stability of the shape of minimum dots 
and the merits of clustered dots. We presented many experimental 
results and their analyses with respect to the relationship between 
the size and the stability of clusters in 2002 and 2003. 

In this paper we discuss the relation between the spatial frequency 
sensitivity and the contrast sensitivity on the basis of the 
experimental results. The experiment was done in 2004 and 2005, 
and a part of which was reported in 2004. 

In the following, we describe an overview of special frequency and 
ordered dither method which we used in our experiment. Then we 
show the result of our experiment and discuss it. Finally we 
summarize the discussion.   

Spatial Frequency Sensitivity 
Research in both neurophysiology and visual psychophysics has 
led to the view that the early visual system consists of spatial 
frequency channels. Retinal images of objects are decomposed into 
spatial frequency components represented as channel activities. 
Object recognition is based on the further processing of this 
representation by later stages in the visual system. Even though the 
channel architecture of the early visual system is an important 
organizational principle in spatial vision, it is concerned only with 
the early stages of visual processing. Many important details have 
not been specified. 

The spatial resolution of the visual system is usually assessed using 
a simple measure of static visual acuity. A typical visual acuity test 
consists of a number of high contrast, black-on-white targets of 
progressively smaller size. Recent research has demonstrated that 
visual spatial processing is organized as a series of parallel, but 
independent, channels in the nervous system. As a result of this 

parallel organization of the visual nervous system, visual acuity 
measurements no longer appear to adequately describe the spatial 
visual abilities of a given individual. Contrast sensitivity testing 
complements and extends the assessment of visual function 
provided by simple acuity tests. 

Contrast sensitivity tests use sine-wave gratings as targets.  Sine-
wave gratings possess useful mathematical properties and 
researchers have discovered that early stages of visual processing 
are optimally tuned to such targets. This leads to determine the 
spatial frequency sensitivity. 

Clustered-Dot Ordered Dither 
Ordered dithering techniques can be divided into two classes by 
the nature of the dots or clusters of dots produced, clustered and 
dispersed. In this paper we use clustered-dot dither because it is the 
most widely used hafltoning technique in the printing process. 

Clustered-dot ordered dither method can be characterized by the 
following four aspects; screen angle, screen frequency, dot pattern, 
level assignment. The original image is divided into cells. Each 
cell we used has 16 × 16 vertical and horizontal pixels, thus the 
screen angle is 0°. We denote each cell A[i, j], where a pixel A[i, j] 
has an integer value I in the interval [0, 255]. We prepare another 
16 × 16 dither matrix B[i, j], whose dot pattern is shown in Fig. 1. 
This is a kind of threshold matrix and each will be compared with 
repeatedly to generate an output binarized image. 

 

0 8 20 39 47 55 63 71 67 59 51 43 35 23 11 3 

4 12 31 79 87 95 127 135 131 123 99 91 83 27 15 7 

16 24 72 104 116 139 159 167 163 155 143 119 107 75 30 19

32 80 100 108 144 171 187 195 191 183 175 151 111 103 86 38

40 88 112 145 176 199 207 223 219 211 203 179 150 115 90 46

48 96 140 172 200 212 231 239 235 227 215 198 170 138 94 54

56 120 152 180 208 224 247 242 244 251 230 206 186 158 126 62

64 128 160 188 216 232 250 255 253 246 238 222 194 166 134 70

68 132 164 192 220 236 243 252 254 245 234 218 190 162 130 66

60 124 156 184 204 228 248 241 240 249 226 210 182 154 122 58

52 92 136 168 196 213 225 233 237 229 214 202 174 142 98 50

44 84 113 146 177 201 209 217 221 205 197 178 149 114 82 42

36 76 101 109 147 173 181 189 193 185 169 148 110 102 78 34

17 25 73 105 117 141 153 161 165 157 137 118 106 74 29 18

5 13 28 77 81 97 121 129 133 125 93 89 85 26 14 6 

1 9 21 33 41 49 57 65 69 61 53 45 37 22 10 2 
Figure 1. Dither Matrix B 
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There is a trade-off between the reproductivity of gray-levels and 
that of spatial resolution. It is said in general that the optimal size 
of halftone cell is around 4 × 4. However, we used 16 × 16 matrix 
B because we need to reproduce 256 gray-levels. 

Experiment 
First we prepare 6 patterns of sample images BC1, SC1, BT1, ST1, 
BS1, and SS1, representing Big Circle, Small Circle, Big Triangle, 
Small Triangle, Big Square, and Small Square, respectively. The 
number ‘1’ of every image name represents the difference of the 
brightness value from the background. For example, ‘BC1’ is an 
image of a circle with a diameter of 15 cm and brightness value of 
64, aligned in the center of a square with sides 18 cm and 
brightness value of 63, and ‘SC1’ is an image of a circle with a 
diameter of 6 cm and brightness value of  64, aligned in the center 
of  a square with sides 18 cm and brightness value of 63. The 
resolution of every image is 400 dpi. 

Second we change the brightness value of each figure and get BC2, 
BC3, ..., BC10, SC2, SC3, ..., SC10, ..., SS2, ..., SS10. For 
example, ST10 is an image of a triangle with sides 6, 7, 7 
centimeters long and brightness value 73 aligned in the center of a 
18 cm × 18 cm square with brightness value of 63, as in Fig. 2. 

Third we binarize each of above 60 original images in three 
different manners; (1) an original image is divided into cells of 16 
× 16 pixels and our dither matrix B is applied to determine the 
output values, (2) an original image is divided into cells of 32 × 32 
pixels and for each cell brightness values of 2 × 2 = 4 pixels are 
averaged and then our dither matrix B is applied to determine the 
output values, where the same output value, 0 or 255, is assigned 
to these 4 pixels, (3) an original image is divided into cells of 80 × 
80 pixels and for each cell brightness values of 5 × 5 = 25 pixels 
are averaged and then our dither matrix B is applied to determine 
the output values, where the same output value, 0 or 255, is 
assigned to these 25 pixels. We show three binarized images of 
ST10 in Fig. 3(1), (2), (3), respectively. Note that binarized images 
consist of many clustered dots and its frequency is about (1) 1 
dot/mm, (2) 0.5 dot/mm, and (3) 0.2 dot/mm, respectively. Thus 
we get 180 sample images after all. 

 
Figure 2. Original image ST10 

 
Figure 3(1). Binarized image of ST10 with frequency 1 dot/mm 

 
Figure 3(2). Binarized image of ST10 with frequency 0.5 dot/mm 

 
Figure 3(3). Binarized image of ST10 with frequency 0.2 dot/mm 

Fourth we print the sample digital images on plain papers by using 
an inkjet printer with maximum resolution 600 dpi which are 
widely used for personal usage. After that we start the test for 
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human recognition of a figure in gray background. Ten students in 
Nippon Institute of Technology with normal or corrected-to-
normal vision, naïve to the purpose of the experiment, served as 
observers in the experiment. An observer looks at each printed 
image and tells whether he/she can recognize a figure in it or not. 
Repeat these processes at a distance of 0.5 m, 1 m, 2 m, and 5 m, 
respectively as in Fig. 4.  

 
Figure 4. Object (figure) recognition test 

Results 
The results of experiments are shown in Fig. 5(a) and Fig. 5(b), 
when the distance between an image and an observer is 0.5m and 
5m, respectively. 
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Figure 5(a). Recognition rate of a small triangle at the distance of 0.5 m 
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Figure 5(b). Recognition rate of a small triangle at the distance of 5.0m 

 

Discussion 
From the result the recognition rate is highest in the case of 1 
dot/mm. Here, let us consider human visual sensitivity for contrast. 
Figure 6 shows a characteristic of human visual system; the 
relation between the spatial frequency and contrast sensitivity or 
MFT (Modulation Transfer Function). There is a peak around 10 
cycles per degree. Next we translate 1 degree to mm. When we 
define the standard viewing distance as 50 cm, then the 1 degree at 
50 cm translates to 500tan(1 degree)=8.7 mm. Thus the spatial 
frequency of maximum contrast sensitivity is around 10 cycles/8.7 
mm=11.46 cycles/mm at the viewing distance of 50 cm. 

We then translate each viewing condition of our experiment to the 
number of cycles per degree and get Table 1. We can explain the 
result of distance 5m, for example, in the following way; in this 
case the contrast sensitivity for the images of 1.0 dot/mm (87.3 
cpd) and of 0.5 dot/mm (43.6 cpd) is too low to perceive each dot 
in these images, thus observers pay more attention to the whole 
images than dots and can find a triangle in each images. On the 
contrary, observers can perceive each dot in the image of 0.2 
dot/mm (17.5 cpd), that disturbs them to perceive contrast. 

Spatial Frequency Sensitivity
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Figure 6. Spatial frequency sensitivity of human visual system 

Table 1: Spatial Frequency (cycles/degree) 
Distance between the image and  

the observer dots/mm 
0.5m 1m 2m 5m 

1.0 8.7  17.5  34.9  87.3  
0.5 4.4  8.7  17.5  43.6  
0.2 1.7  3.5  7.0  17.5  

 

As for the difference of brightness value between the figure’s and 
background’s, recognition rate gets higher as the difference gets 
bigger, which is predictable. We can say, however, there is a 
certain value of difference at that the recognition rate changes 
radically. For example, in Fig. 5(a) the recognition rate for the 1.0 
dot/mm image raises from 50% to 100% when the difference of 
brightness value increases from 4 to 5. Since the spatial frequency 
sensitivity is high in this case (8.7 cpd), it is expected that there 
exists a critical value of brightness which sharply stimulates 
human visual sensitivity. 
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As future works, the following items will be remained; 
1) consider the influence of light level, and 
2) consider the eyesight of observers. 

Conclusion 
We made 180 different binarized images with three different 
spatial frequencies. We then did some tests using them in order to 
find the critical point where our attention is attracted more to the 
image as a whole than to the dots. We can explain the results by 
considering the spatial frequency sensitivity of human visual 
system. 
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