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Abstract 
Granularity is one of the most important visual artifacts to 
evaluate the performance of an imaging system, including a 
printer. At present, granularity-measuring techniques can only be 
applied on patches with uniform color. However, human can easily 
perceive graininess on any image; Hence, in this paper, we 
propose an algorithm to quantify image graininess. First, a flatbed 
scanner is adopted for its capability to capture large image area. A 
short-time Fourier transform technique is devised to accurately 
remove color screen halftone signal without any prior knowledge 
of the adopted screen signals. At last, users can pinpoint the area 
of interest to measure color graininess based on CIEDE-2000. 

Introduction 
Granularity is one of the most important visual artifacts to evaluate 
the performance of an imaging system such as a printer, and there 
have been significant amount of effort and success to quantify the 
perceived graininess objectively. In general, granularity can be 
described as high frequency aperiodic reflection density 
fluctuation. For example, ISO13660 international industrial 
standard has defined a procedure to measure achromatic 
granularity on a gray patch.1 Other researchers have proposed to 
incorporate the human visual sensitivity function to measure 
achromatic granularity.2 With the rapid prevalence of color 
printing systems, the demand for measuring chromatic granularity 
becomes ever increasing. Unlike the achromatic case where it is 
sufficient to quantify various visual attributes in a unidimensional 
basis, i.e. reflection density, a general color granularity algorithm 
needs to summarize the perceived graininess on an image in, at 
least, a three dimensional space. We recently proposed to measure 
color noise in the visually uniform CIEDE2000 color difference 
space.3,4 

The aforementioned algorithms share one limitation: they can only 
be applied on patches with uniform intended color, which exists 
primarily in graphics, but not in ordinary images. Hence, we will 
propose an algorithm in this paper to extend the current color 
granularity techniques to be applicable to ordinary printed color 
images. It has been shown that it is essential to remove all screen 
signals without affecting inherent image noise before measuring 
granularity to achieve satisfactory correlation against visual 
response.2 As a result, the requirement for a screen-removal 
algorithm is the ability to first precisely identifying present color 
screen halftone signals, and then removing them. In the case of a 
scanned patch with uniform color, this can be translated to 
designing one two-dimensional filter for each color channel of 
which frequency response is zero at the identified halftone 
frequencies as well as the associated strong harmonics, and is one 
elsewhere. This two-dimensional filter design problem is known to 
be very difficult. This problem becomes more complicated when a 
scanned ordinary image is involved because the color screen signal 

becomes space variant. Our previously proposed screen-removal 
algorithm based on log-frequency thresholding principle can only 
be applied on uniform color patches4; Hence, in this paper, we will 
extend this technique to be applicable to any scanned images based 
on short-time Fourier transform.5 When users obtain the 
descreened image, they can pinpoint the area of interest to measure 
color granularity. An area of the image is segmented based on the 
perceived color similarity and spatial distance with respect to the 
selected pixel. Since we are dealing with ordinary images, it is 
most probable that we will obtain an area with irregular shape. As 
a result, it is very difficult to extend the granularity metrics based 
on Fast Fourier Transform (FFT). We suggest to first cluster the 
segmented area into a predefined number of centroids, {C

i 
| i = 1 ~ 

N}, and compute the standard deviation of color variation, {σ
i 
| i = 

1 ~ N}, near each centroid. The color variation is quantified via 
CIEdE2000. The estimated color noise can be estimated as the 
mean of σ

i
 denoted as Ε{σ

i
}. We can then estimate the perceived 

color graininess as suggested in Ref. [4]. At last, we will test the 
proposed algorithm on several images. 

Proposed Algorithm 
A prerequisite step before adopting a flatbed scanner as measuring 
equipment is to calibrate it to perform closely as a colorimetric 
device, of which accuracy is constrained by metamerism.6 The 
discrepancy between two equipments becomes more pronounced 
when more than three colorants are used during the printing 
process. However, it is the color difference, i.e. color gradient, that 
is critical in measuring color granularity. We demonstrated that the 
color mapping function f

map
:{r,g,b}→{L*,a*,b*} is roughly a 

smooth quadratic function.4 Hence, it is reasonable to assume that 
the color gradient in a neighborhood in CIELab space is very 
similar. As result, we can further assume that the estimated color 
variation is valid although the actual color might be slightly off. 
The scanner calibration algorithm is explained in Ref. [4]. 

Space Variant Color Screen Removal 
Halftone screen removal algorithms generally can be classified 
into two categories: low-pass/band-pass filtering and halftone 
signal detection/subtraction. Unlike the usual applications needed 
descreening for scanned image segmentation, classification or 
visualization, where the only requirement is to produce visually 
similar images, because image granularity is the inherent high 
frequency noise, any successful granularity measuring algorithm 
needs to precisely identify and remove the existing halftone screen 
signals without affecting inherent image noise. Moreover, it has to 
be able to achieve this objective adaptively with respect to all 
possible halftone screen signals, their harmonics as well as 
combinations. This essentially eliminates the low-pass/band-pass 
filtering approaches because of the difficulty of designing such 
two-dimensional filters. As a result, we can reformulate the 
problem of removing space variant color halftone screen signals as 
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a problem of sparse signal representation. This generally can be 
classified into two approaches: wavelet transform and short-time 
Fourier transform (STFT).5 Because halftone screen signals exhibit 
strong peaks in the frequency domain, Fourier basis should be a 
natural candidate. We propose to adopt the STFT approach to 
accommodate the space variant characteristics of halftone screen 
signals on regular images. Let the scanned image be I

o
(x,y|r,g,b), 

and the task becomes to derive an overcomplete signal basis, B
o
. 

The halftone signals, i
b
(x,y}, is the signal in I

o
(x,y|r,g,b) spanned by 

B
o
. Then, the descreened image, I

d
(x,y|r,g,b}, is the residual image 

as explained by Eq. (1): 

I
d
(x,y|r,g,b}= I

o
(x,y|r,g,b)-P(I

o
(x,y|r,g,b)) = I

o 
- i

b
,                 (1) 

where P is an operator projecting an image onto B
o
. 

There are two conflicting parameters in building B
o
 based on 

STFT: spatial and frequency resolution. To reduce the 
computational complexity of simultaneously optimizing both 
parameters, we will first estimate an appropriate window size to 
reliably identify screen frequencies. Then, we will adopt Fourier 
transform via using overlapping blocks to avoid border effect. 
Let’s assume that most of halftone screen signals and their 
harmonics reside in spatial frequency ranges from 50 to 300dpi, 
and a digitized sinusoid with signal length approximately 10cycles 
or more will exhibit well-defined peaks after applying FFT. 
Scanning resolution of 600dpi is minimal to avoid aliasing artifacts 
based on the Nyquist sampling principle. As a result, we propose to 
set the scanner resolution to be 800dpi by providing 100dpi margin 
to the highest halftone screen frequency. Furthermore, the block 
size should be approximately 10×(800/50)=160 pixels. Thus, we 
select the overlapping block width to be 128 pixels (~4 mm) to 
reach the compromise between the spatial and frequency resolution 
demand. 

Let the scanned image I(x,y|r,g,b) be decomposed into three 
components: the actual image, I

o
(x,y|r,g,b), the halftone screen 

image, I
s
(x,y|r,g,b), and the imaging noise, I

g
(x,y|r,g,b). I

g
(x,y|r,g,b) 

contains color granularity, mottle and other artifacts, which could 
come from the original imaging process as well as the printing 
process. We can formulate the problem of halftone screen signal 
removal as a binary hypotheses decision problem. Let H0 and H1 
be the two hypotheses:  

H0: I(x,y|r,g,b) = Io(x,y|r,g,b)+Ig(x,y|r,g,b)  

H1: I(x,y|r,g,b) = Io(x,y|r,g,b)+Is(x,y|r,g,b)+Ig(x,y|r,g,b). 

In general, I
o
 and I

s
 are much stronger than I

g
, which is the signal 

that we intend to measure, and I
o
+I

g
 is common in H0 and H1. 

Thus, it is preferable to first subtract I
o
 from I before increase the 

signal-to-noise (S/N) ratio. The difference between using color 
patches and actual images is that a color patch I

o
 can be reliably 

estimated as the overall mean, i.e. I
o
 ~ E{I

o
(x,y|r,g,b)}. This 

conclusion can’t be reached with respect to ordinary images 
without prior knowledge of the original imaging process. As a 
result, it is not possible to separate the estimated color granularity 
between the original imaging process from the printing process. 

Nonetheless, we can still compare the perceived graininess 
difference among various printing processes using the same 
original image I

o
(x,y|r,g,b). Based on the assumed frequency range 

of possible halftone screen signals, I
o
 can be estimated via FIR 

low-pass filters or nonlinear filters to better preserve image edge 
information such as color sigma filter.7 Because we only need to 
subtract the majority portion of I

o
 to facilitate the following 

halftone removing algorithm, a simple FIR Gaussian lowpass filter 
with stopband frequency begin slightly higher than 50dpi is 
adopted to remove I

s
 and obtain I

h 
= I - I

o
. 

Transform to the spatial frequency domain, and the updated H0 and 
H1 can be expressed as:  

H0: Ih(wx,wy|r,g,b) = Ig(wx,wy|r,g,b) 

H1: Ih(wx,wy|r,g,b) = Is(wx,wy|r,g,b)+Ig(wx,wy|r,g,b). 

Let’s assume that the logarithm of the magnitude of I
g
(w

x
,w

y
), 

log||I
g
(w

x
,w

y
)||, in the null hypothesis H0 is composed of two 

separable signals: a slow-varying two dimensional signal, S
g
, and a 

white Gaussian noise signal, N(0,σ). Note that there exist 
constraints when a real signal is transformed to the frequency 
domain, such as Conjugate symmetry: 

I(w
x
,w

y
) = (I(-w

x
,-w

y
))*.               (2) 

We first devise a two dimensional spline functional while 
satisfying equation (2) to estimate S

g
. As a result, by taking the 

logarithm and subtracting S
g
 from log||I

h
(w

x
,w

y
|r,g,b)||, the two 

hypotheses H0 and H1 can be modified as below:  

H’0 : N(0,σ)                 (3) 

H’1 : N(0,σ)+logI
s
(w

x
,w

y
|r,g,b).             (4) 

Thus, it is obvious that we can first estimate σ, and apply the hard-
thresholding technique to recover I

s
(x,y|r,g,b).8 Let  

I
n
(w

x
,w

y
|r,g,b) =log||I

h
(w

x
,w

y
|r,g,b)||-S

g
.            (5) 

Assume I
n
 as a random field with distribution N(0,σ

r,g,b
), and σ

r,g,b
 

can be estimated via a Maximum Likelihood method. Define 
threshold values δ

r,g,b
 = 3σ

r,g,b
, and we can readily deduce that the 

probability of Type-I error is less than 0.2%. 

Figure 1 shows a example of one image block, and Figure 2 
illustrates that our assumption of I

n
 being normal distributions is 

reasonable. As a result, the halftone screen signal I
s
(w

x
,w

y
|r,g,b) 

can be estimated via following hard-thresholding algorithm: 

I
s
(x,y|r,g,b )= 0,         if I

n
(w

x
,w

y
|r,g,b)≤δ           (6) 

I
s
(x,y|r,g,b) = I

h
(w

x
,w

y
|r,g,b), if I

n
(w

x
,w

y
|r,g,b)>δ          (7) 
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Figure 1. Example of Image Block 
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Figure 2. In Distribution and Gaussian Fit 

Interactive Image Granularity Sampling 
Besides the inherent noise from the imaging process, color 
granularity is due to the variation of the dot size, shape and relative 
location. Hence, image granularity should be measured in an area 
with slight color variation. This, in turn, suggests that scanned 
images need to be segmented into non-overlapping regions before 
estimating color granularity. Moreover, regions with high 
frequency image structures should be avoided because of the visual 
masking effect on perceived graininess by those image structures. 
The challenge of measuring color granularity in a whole image is 
the high computational complexity in blind image segmentation. 
Recognizing that observers usually pay their attention to only 
several locations within an image, we propose an interactive image 
granularity-sampling algorithm based on human interference. The 
algorithm is separated into four steps: 

1. Manually identify points of interest, { p
i
 |i = 1 …L}. 

2. Extract a connected region, R
i
, associated with each p

i
 where 

dE2000(x
i
,p

i
) < α, ∀ x

i
∈ R

i
. Currently, we set α = 9. 

3. Exclude the border of R
i
, and limit the size of R

i
 to be no 

larger than (12.7)2 mm2 with relative distance to p
i
. 

4. Adopt k-means clustering algorithm to uniformly sample R
i
 at 

100 points, {c
i
|i = 1 …100}. 

 
Step 3 and 4 are derived from the current international standard 
(ISO/IEC13660) on measuring gray granularity.1 At last, we 
transform the descreened RGB image onto CIELab space via the 
color mapping function derived from the scanner calibration 

procedure. A small window centered at each c
i
 with width 40 

pixels (1.27 mm) is extracted, and the color granularity at the point 
of interest p

i
 is measured as the average of the standard deviation 

of color variations at {c
i
|i = 1 …100} as explained in Ref. [4]. 

Figure 3 shows a descreened image where each dot denotes one 
sampling point. It demonstrates that the proposed algorithm 
distributes sampling centroids fairly uniformly in an irregular 
region and it successfully avoids pronounced inherent image 
structures. 

 
Figure 3. Interactive Granularity Sampling 

Experiment Result 
The main difference of removing halftone screen signals between 
from regular images and from single color patches is the space 
variant characteristics of the halftone screen signals. Hence, we 
propose to adopt STFT to reach a compromise between precisely 
removing halftone screen signals and quickly adapting to local 
image content variations. Consequently, we should first compare 
this algorithm with that based on Fourier transform (FT) as 
explained in Ref. [4] on single color patches. A black patch with 
60% tint and the corresponding two descreened images based on 
FT and STFT are shown in the following: 

 

 
Figure 4. Black Patch with 60% Tint 
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Figures 5 and 6 show that both algorithms can reliably remove 
halftone screen signals on a color patch, and it is very difficult to 
perceive the difference between Figure 5 and 6. To show the 
relative numerical changes, we can easily calculate the 50th and 95th 
percentile points of code value fluctuations within Figure 5 to be –
0.34 and 13.09 respectively while the corresponding percentile 
points of code value difference between Figure 5 and 6 are only 0 
and 3. 

 
Figure 5. Descreened Patch via FT approach 

 
Figure 6. Descreened Patch via STFT approach 

The 50th percentile point being 0 indicates that more than half of 
the pixels between two figures are exactly the same. Furthermore, 
to evaluate how much this code value difference affects the 
computed color granularity, we adopt both descreening algorithms 
to seven color patches with 60% tint, including cyan, magenta, 
yellow, black, red, green and blue. They show that STFT algorithm 
creates color patches with slightly higher computed color 
granularity than FT algorithm with average offset being 0.06 and 
maximum 0.11. To put this difference in perspective, the average 
dynamic range of computed color granularity on a color patch 
using FT algorithm is also 0.06. We can, therefore, deduce that we 
can ignore the difference between the FT and STFT algorithm. 

Figure 7 and 8 illustrates the effectiveness of our proposed STFT 
algorithm on removing image color halftone screen signals. Figure 
7 is the original scanned image which contains at least three 
different color screen combinations, and Figure 8 shows that our 
algorithm successfully remove those color screen signals without 
degrade the inherent image content. For example, unlike the low-
pass filter approach, edges and fine details are well preserved. 

Note that we can still perceive slight reminiscence of color screen 
signals along the edges as well as within fine details. This is the 
compromise we made to select one window block size in the STFT 
color screen-removing algorithm to reduce the computational 
complexity. However, we can argue that a large image area is 
necessary to compute the corresponding color granularity. That is, 
image regions with fine details and edges are not suitable for 
computing granularity. Thus, this limitation will not affect our 
objective to measure image graininess. 

 
Figure 7. Original scanned image 

 
Figure 8. Descreened Image via the STFT algorithm  
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Although measuring granularity on uniform color patches is an 
effective approach to assess the performance of a printing system, 
there sill exists situations where measuring granularity on real 
images are needed. For example, the performance of two ICC 
profiles is best evaluated on real images because the computed 
granularity on primary colorants is unchanged. We select a test 
image as shown in Figure 9, and print it via two versions of ICC 
profiles. A quick survey shows that the profile-A results in higher 
perceived graininess than profile-B in all four tested regions: (1) 
arm, (2) lower-left tree, (3) forehead and (4) background tree, 
which are denoted in Figure 9. The computed granularity using our 
proposed algorithm is listed in Table 1. 

Table 1 shows that the proposed algorithm successfully match the 
rank order of human observation. 

Table 1: Granularity in 4 Areas of Interest 
 Area 1 Area 2 Area 3 Area 4 

Profile A 10.58 6.75 8.62 4.98 
Profile B 5.86 4.60 5.57 4.47 

 

 
Figure 9. Test Image 

Conclusion and Future Works 
We have described an algorithm to quantify color granularity on 
regular images, and it consists two steps: removing space variant 
color halftone screen signals based on STFT, and interactive image 
granularity sampling technique. The proposed algorithm is shown 

to produce similar results on uniform color patches when 
compared with the FT approach we suggested in Ref. [4]. We then 
successfully measure color granularity and correlate with human 
observation in rank order on four areas of interest in an image. In 
the future, we plan to conduct psychophysical experiments on 
perceived graininess on regular images to obtain a more detailed 
and precise perceptual transformation from objective 
measurements. 
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