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Abstract

In this paper, we present a new system to segment and label
document images into text, halftone images, and background using
feature extraction and unsupervised clustering. Each pixel is
assigned a feature pattern. The invariant feature pattern is then
assigned to a specific region using the Expectation-Maximization
(EM) algorithm. Once the segmentation is performed, a specific
enhancement filter can be applied to each document component.

Introduction

Digital copying, in which a digital image is obtained from a
scanning device and then printed, involves a variety of inherent
factors that compromise image quality. Ordered halftone patterns
in the original document interact with the periodic sampling of the
scanner, producing objectionable moiré patterns. These are
exacerbated when the copy is reprinted with an ordered halftone
pattern. In addition, limited scan resolution blurs edges, degrading
the appearance of detail such as text. Fine detail also suffers from
flare, caused by the reflection and scattering of light from the
scanner’s illumination source. Flare blends together nearby colors,
blurring the high-frequency content of the document.

To suppress moiré, a filter may be constructed that is customized
to the frequencies of interest. However, both the detection of the
input halftone frequencies and the frequency-domain filtering itself
can require significant computational effort. Although crude, a
simple, small low-pass filter can correct the majority of moiré
artifacts. Unfortunately, low-pass filtering affects detail as well,
blurring it even further.

Sharpening improves the appearance of text and fine detail,
countering the effects of limited scan resolution and flare. Edges
become clear and distinct. Of course, other artifacts such as noise
and moiré become sharper as well.

The solution is simple in concept: determine the content of regions
within the scanned image and then apply the appropriate filter to
each region. Sharpening should be performed on fine detail, while
moiré suppression should be applied to certain periodic artifacts.

From the above discussion, we can conclude that for an image
enhancement system to work properly, a preprocessing step should
include a segmentation of the document into text, halftone and
background. If this step is successfully completed, the application
of an appropriate filter should be straightforward.

Several approaches for document segmentation have been

proposed.™ These techniques can be broadly classified as bottom-
up or top-down. Bottom-up methods start from the pixel level and

412

merge regions together into larger and larger components. Top-
down techniques apply a priori knowledge about the page to
hypothesize and split the page into blocks which are subsequently
identified and further subdivided. Top-down approaches work well
with pre-specified layouts such as technical papers. However, the
performance of these techniques degrades significantly when
different components are touching or overlapping. Among bottom-
up approaches, texture-based schemes have attracted much
attention.”*

These methods treat different components of a document image as
different textures. The scanned document images are convolved
with a set of masks to generate feature vectors. Each feature vector
is then classified into different classes using a pre-trained
classifier. One problem associated with these approaches is the
mask size for extracting local features. If the mask size is too
small, it is difficult to detect large scale textures such as large
fonts. On the contrary, if a large mask is chosen, the computational
complexity will increase dramatically.®

In this paper, we propose a simple document segmentation
technique that involves extracting discriminating features and
clustering them into different regions using the Expectation-
Maximization (EM) algorithm.

System Description
The presented method consists of the following steps: feature
extraction and clustering and labeling.

Feature Extraction

The first step in our approach is to extract a feature pattern for each
pixel in a gray level image. A feature vector, y, is a set of
measurements {y',)°,~ " which condenses the description of
relevant properties of the image into a small, Euclidean feature
space of d dimension. The number of needed features depends on
the complexity of the image. The components of the feature vector
may include gray values, gray values through different filters,
texture measures, Markov random field features, fractal dimension
measures, and gradient magnitudes and directions.”

In this paper, we will construct our feature vector from
measurements obtained from gray level distribution in a window,
W, of dimension w x w centered around each pixel. These features
describe the first order gray level distribution without considering
the spatial interdependence. Two features were selected:

1. The mean gray level, u,
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where I(x,y) is the gray level at location (X,y).

2. The variance ¢° of the gray level variation
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Image Segmentation

In order to segment the image, we model the joint feature
distribution with a mixture of Gaussians. We use the Expectation-
Maximization (EM) algorithm to estimate the parameters of this
model. The EM algorithm is used for finding maximum likelihood
parameter estimates when there is missing or incomplete data. In
our case, the missing data is the gaussian cluster to which the
points in the feature space belong.’

Assuming that we use C clusters in the mixture model, then the
joint distribution can be modeled as

p(y/©)= Z p(3.6)= Z zip(y16,), 3)
i=1

where y is the feature vector, 7z represents the weight of the i-th
mixture, and
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where x4, and X, are the mean and the covariance matrix for the i-th
class.

Parameter Estimation
The EM algorithm to cluster N feature vectors iterates as follows:

1. The E-step:

For every pixel at location ¢, 1 <t < N, compute &, as
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where y, is the feature vector at location t, z' is the mixing
proportion of the i-th mixture at step k, and ® is estimated
parameter for the i-th mixture at step k.

2. The M-step:
We compute the new mean, the new variance and the new
proportion from the following equation:
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3 Repeat steps 1 and 2 until the relative difference of the
subsequent values of Eq. 6, Eq. 7, and Eq. 8 are sufficiently small.

Results

We tested our algorithm with several images scanned at 600 dpi.
Each pixel was assigned a feature vector using a 5 x 5 window. As
shown in Figures 1 and 2, the feature modeling step was performed
using a mixture of 4 Gaussians. The parameters were estimated
using the EM algorithm as described above. Figures 1 and 2 show
the original histogram of the features, their mixing components
and the final modeling. Once the modeling step is performed,
document pixels are assigned to one of three classes: text, images,
and background. Figures 3 and 4 illustrate such operation on two
different scans. Figure 4 was further postprocessed to remove
segmentation outliers.

Conclusions

In this paper, we presented a new technique to segment document
images. With this technique, each pixel is assigned a feature
pattern. The invariant feature pattern is then assigned to a specific
region using the Expectation-Maximization algorithm. Once the
segmentation step is performed, specific filters and interpolation
functions can be applied to each document component.

Future work will seek the incorporation of an image modeling
technique such as Markov random Field (MRF) to model spatial
interactions between pixels. Such modeling should produce a
segmentation that is more robust to noise.
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Figure 1. Histogram of the mean feature and its modeling using
4 gaussian mixtures. Middle figure shows the different compo-
nents and Bottom gur e shows their combination to model the
histogram.
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Figure 2: Histogram of the variance feature and its model-
ing using 4 gaussian mixtures. Middle figure shows the differ-
ent components and Bottom gur e shows their combination to
model the histogram.
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Original and segmented document into text (black),
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image (gray), and background (gray)

Figure 4

Original and segmented document into text (back),

image (gray), and background (gray)

Figure 3
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