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Abstract  
A general theory describing light propagation in turbid media is 
presented, taking into account the effect of scattering on the path 
length of light propagation. This leads to new relationships 
between the K-M scattering (S) and absorbing (K) coefficients and 
the intrinsic scattering (s) and absorbing (a) coefficients of 
material. It is shown that experimental findings of dyed paper, 
typical examples that the original K-M theory failed to explain can 
clearly be understood and accommodated by the theory. 

Introduction 
The original theory of Kubelka-Munk (K-M) is a two-flux 
approach to the general Radiation Transfer Theory, developed for 
light propagation in parallel colorant layers of infinite xy-
extension.1 In the theory, the downward (-z direction) flux, I, is an 
average representation of all rays traveling towards the lower 
hemisphere. Likewise, the upward flux (+z direction), J, is an 
average of all rays traveling towards the upper hemisphere. The 
propagation of the up- and down-ward fluxes are characterized by 
so-called K-M scattering and absorption coefficients, denoted as S 
and K, respectively, i.e., 

SIJKS
dz
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dz
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Quantities S and K have no direct physical meaning on their own, 
even though they appear as if they represent portions of light 
scattered and absorbed, respectively, per unit vertical length. In the 
case of diffuse light distribution, the average path length for a light 
ray passing through a layer of ∆z is 2∆z. Therefore, K is twice the 
intrinsic absorption coefficient.2 S is subject to the same change as 
K due to the average path length, but additionally, in the 
formulation of Eqs (1), S addresses only the portion of the 
scattered light that changes direction from upward and downward, 
or vice versa. For isotropic scattering, this is exactly half of the 
actually scattered light. Thus, Kubelka and Munk suggested the 
following relationships 

K=2a,   S=s,   (2) 

where a and s are the intrinsic absorbing and scattering coefficients 
of the media. Unlike K and S, quantities a and s are the physical 
properties of the material, representing the probabilities of light 
being absorbed (a) and scattered (s) per unit path length 
isotropically. 

The K-M theory has enjoyed great successes in both scientific and 
industrial applications, since introduction in the 1930's. In present 
day paper-making and color-using industries, it remains as one of 
the most widely used theories. Nevertheless, this theory has, at the 

same time, been over-shadowed by experimental findings 
suggesting non-linear relationships between S and K, and a and s.3,4 
Here, we use an example, a dyed-paper sheet,5 to illustrate the 
difficulties encountered in the paper-related applications. 

Let K
i
 and S

i
, and K

p
 and S

p
 be the K-M coefficients of absorption 

and scattering of ink (i) and paper (p), respectively. If the ink is 
mixed homogeneously with the paper and if the linearity given in 
Eq. (2) holds, the K-M scattering and absorbing powers of this 
dyed sheet may be computed by,6 
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where w
i
 and w

p
 are the grammages of the ink and paper, 

respectively. Because the ink is almost purely absorptive and the 
paper is mainly scattering, one would anticipate that an ink-dyed 
sheet has a similar K-M absorbing power to that of the ink and, at 
the same time, a similar K-M scattering power to that of the paper. 
Unfortunately, inverse calculations5 based on measured spectra for 
a dyed (paper) sheet giving its K-M powers, S

ip
(w

p
+w

i
) and 

K
ip
(w

p
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i
), reveal that the light absorption power is remarkably 

nonlinear to dye concentration.5 Scattering power, on the other 
hand, is dramatically decreased with respect to increasing ink 
concentration in the absorbing band of the ink, compared with that 
of the pure paper.7 These observations do not at all agree with the 
K-M expectations, which has contributed to the long standing 
debate on the applicability of the K-M theory. 

Understanding the origin of the shortcomings of K-M theory have 
attracted continuing interests of researchers in decades.3,4,8-11 To 
overcome the difficulties, different approaches have been 
proposed, aiming at compensating these shortcomings by 
expressing K and S as sophisticated functions of the intrinsic 
coefficients, a and s, of the materials. However, they have proved 
not to be transferable to applications in other contexts. 

This report presents a revision on the K-M theory, taking into 
account effects of light scattering on path length, overlooked in the 
original K-M theory. The revised theory is then illustrated by 
applications to dye-dispersed paper.  

The Revised K-M Theory  
For clarity and simplicity of the descriptions, assumptions used in 
this presentation are summarized as follows. First, the sample is a 
plane layer (perpendicular to the z-axis) whose size in the xy-
extension is much larger than its thickness. Edge effects are 
therefore negligible. Second, the sample is optically homogeneous. 
Third, the scattering in the sample is random and isotropic, i.e., it 
is independent of the angle between the incident and scattering 
directions. Finally, the light is incoherent or light interference is 
negligible. Here, we only report studies on a media system in 
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which light distribution is diffuse. More general theoretical 
descriptions may be found elsewhere.12 
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Figure 1. The schematic diagram of light propagation in turbid media. 

Figure 1 is a schematic presentation for a photon that transverses 
the medium layer of thickness ∆z, from A to B. The length of the 
displacement between the incident and the exiting points is ∆r. 
Because of light scattering, the photon propagates in the media in a 
zigzag fashion rather than straight forward towards the exiting 
point. As a consequence, the photon takes a longer path 
(represented by ∆l) than it seems to be. We define µ as the ratio 
between the real path length, ∆l, and the nominal one, ∆r, i.e, 

µ = ∆l/∆r (4) 

Then, the real path length corresponding to the displacement 
equals ∆l = µ∆r. Consequently, the possibility for a photon being 
absorbed and/or scattered, which is proportional to the real path 
length, becomes µ times enlarged. Since the media is 
homogeneous and light scattering is isotropic, quantity µ is hence 
directionally independent. Therefore, the average path length for a 
light ray passing through a layer of ∆z becomes 2∆z. Consequently, 
Eq. (2) should be replaced by: 

K = 2µa,    S = µs. (5) 

Based on fundamental principles of physics, the mathematic 
expression for µ has been worked out,12 i.e., 

µ = 2sD, (6) 

where the quantity, D, has the meaning of the average depth of 
photons that undergo reflection and exit from the upper surface 
and is expressed as: 
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with A=(K2 + 2KS)1/2. 

As the quantity, µ, depends on both light scattering and absorption, 
as well as the grammage (or equivalently thickness) of the medium 
layer, w, K-M coefficients K and S are generally nonlinear 
functions of a and s, which is in contrast with what were suggested 
in the original K-M theory (Eq. (2)). In other words, the original 
K-M theory is only a special case of the revised theory (µ=const.). 

Equations (5)-(7) are the principle results of the revised model. 

Applications and Discussions 
This section has the intention of demonstrating the powerfulness of 
the revised theory, applying to dyed paper sheets. At the same time 
it also intends to provide an understanding of experimental 
observations unsatisfactorily represented by the original K-M 
theory. 

Experimental Observations 
The optical properties of paper, a

p
 and s

p
, can be computed from 

the corresponding K-M coefficients of absorption and scattering of 
paper K

p
 and S

p
, using Eqs. (5-7). The latter can be determined 

from spectral reflectance values of a paper sheet measured with 
white and black backings, respectively.13 Similarly, one obtains the 
intrinsic properties of the ink, a

i
 and s

i
. 

Assuming the validity of the superposition principle, the total 
absorption and scattering coefficients of the dyed paper, a

ip
 and s

ip
, 

are weight summations of those of the ink and the paper, i.e. 
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Figure 2. The intrinsic absorption and scattering coefficients of the cyan-dyed 
sheets, aip and sip, computed with wp = 40g/m2 and wi = [0, 0.005, 0.01, 0.02, 
0.05, 0.1, 0.2] g/m2. The results in the case of white paper are denoted by the 
dots. 
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Figure 2 depicts the intrinsic coefficients of the cyan-dyed sheets, 
a

ip
 and s

ip
, computed with w

p
 = 40 g/m2 and with varying amounts 

of dye: w
i 
= 0.0-0.2 g/m2. The behavior depicted by the curves in 

these figures is straightforward to explain. Since w
i
a

i
<<w

p
a

p
 and 

w
i
s

i
<<w

p
s

p
, the physically meaningful coefficient of absorption, a

ip
, 

is dominated by the dye component. Hence, the greater the amount 
of dye, the stronger the absorption, in the absorption band of the 
dye. On the other hand, as we have already argued, the scattering 
property of the mixture is dominated by the paper component and 
thus the total scattering coefficient, s

ip
, is approximately 

independent of dyeing. 

Figure 3 shows typical examples of K-M coefficients, K
ip
 and  S

ip
, 

computed from experimental spectra for paper sheets (p) dyed with 
different amounts of cyan ink (i). In the case shown, the grammage 
of the white paper was w

p
=40.51g/m2. With ink-dye present, the 

grammage for the dyed sheets varied from 40.16 to 41.73g/m2. The 
K-M absorption coefficient, K

ip
, shows a clear response to 

increases in dye, even for very small amounts. On the other hand, 
the scattering coefficient, S

ip
, exhibits a less remarkable variation 

upon dyeing, unless the amount of ink is significantly high. More 
precisely, S

ip
 decreases in the absorption band of dye, when the 

amount of dye is sufficiently large, but is little changed elsewhere. 
Such behavior in S

ip
 is completely unexpected from K-M theory,7 

as the following argument will show. According Eq. (2), K
ip
=2a

ip
 

and S
ip
=s

ip
. Since the scattering and mass properties of the ink-

paper mixture are dominated by the paper material, s
p
>>s

i
 and 

w
p
>>w

i
 , one deduces from Eqs. (8) that S

ip
=s

ip 
≈ s

p
=S

p
. That is, S

ip
 is 

approximately constant, independent of the amount of dye. This is 
clearly in contradictory to the experimental findings demonstrated 
in Fig. 3. 
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Figure 3. The K-M coefficients of absorption and scattering of the cyan-dyed 
sheets having nominal grammages 40.16-41.73g/m2, computed from 
experimental spectra.13 The results in the case of white paper are denoted by 
the dots. 

Explanations with the Revised Theory  
In the revised theory, the K-M coefficients of absorption and 
scattering of the dyed paper, K

ip
 and S

ip
, relate nonlinearly to the 

intrinsic coefficients, a
ip
 and s

ip
, i.e., 

K
ip
 = 2µ

ip
a

ip
,   S

ip
 = µ

ip
a

ip
. (9) 

The quantity µ
ip
 that reflects the effect of light scattering on the 

real path length in the dyed paper, can be computed iteratively 
employing Eqs. (5-7), starting with µ

ip
 = 1. 

Figure 4 depicts the factor, µ
ip
, computed with w

i
 = 0.0-0.2g/m2 and 

w
p
=40g/m2. It shows clear dependence on the amount of dye. 

When w
i
 is small, for example, µ

ip
 is little changed, which results in 

essentially linear relationships between K
ip
 and S

ip
 and, a

ip
 and s

ip
. 

Consequently, K
ip
 increases linearly with the amount of dye, while 

S
ip
 is little changed. In such a case, the original K-M theory applies 

well as been known for some time. However, when the dye amount 
further increases, the factor µ

ip
 significantly decreases upon dyeing 

in the absorption band of the dye, while changes little elsewhere. 
Such a nonlinear dependency of µ

ip
 on the amount of dyeing is 

responsible for the failure of the original theory, when applied to 
such a medium system as heavily dyed paper. 
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Figure 4. The quantity µip computed with wp=40g/m2 and wi=[0, 0.005, 0.01, 
0.02, 0.05, 0.1, 0.2] g/m2. 
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Figure 5. The KM coefficients of absorption and scattering for the cyan-dyed 
paper sheets computed with wp=40g/m2 and wi =[0, 0.005, 0.01, 0.02, 0.05, 
0.1, 0.2] g/m2. 
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Figure 5 shows the computed K
ip
 and S

ip
 values of the cyan-dyed 

paper. As seen, the experimental features shown in Fig. 3 are very 
well reproduced, indicating the applicability of the revised theory 
to systems of various absorption powers. Simulations to dyed 
paper sheets with magenta and yellow dyes14 further confirm the 
nonlinear relationships between the K-M coefficients of absorption 
and scattering, K

ip
 and S

ip
, and their intrinsic count parts, a

ip
 and s

ip
, 

respectively, which are compared very favorably with 
experimental observations. 
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