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Abstract  
Exponential decay, bi-exponential decay, and related decay 
processes are common in the physical world. Stretched exponential 
time dependence of the form 

ckte )(− has been observed in connec-
tion with the discharge of electrophotographic photoconductors, 
luminescence in porous silicon, dielectric relaxation in glassy and 
polymeric materials, as well as in other systems. Exponential 
decay, the stretched exponential, the Kohlrausch-Williams-Watts 
function KWW, and the Buettner function satisfy a differential 
equation that depends on the exponent c and the entropy of the 
system. The form of the decay function determined by the exponent 
c can be shown to be consistent with cooperative events occurring 
during relaxation and can be related to the chemical potential of 
the system. This indicates that probabilistic, cooperative events 
may play a role in the dynamics of stretched exponential decay 
processes in addition to distributions of relaxation times and 
relaxation paths. 

Introduction 
The Exponential and the Stretched Exponential 
Exponential decay functions have the familiar form  

ktetf −=)(exp  (1) 

with rate constant k and satisfy a differential equation in which the 
rate of decay is proportional to the magnitude of )(exp tf . 

)(
)(

exp
exp tkf
t
tf

−=
∂

∂
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The stretched exponential has the form 

 
cktetf )()( −=  (3) 

Values of c <1 result in decay times that are longer than for 
exponential decay. The stretched exponential is plotted for c<1, 
c=1, and c>1 in Figure 1. The case c=1 reduces to the exponential 
function, Equation (1). Many physical systems are described by a 
stretched exponential with c<1 during relaxation, which is known 
as the Kohlrausch-Williams-Watts function (KWW).1-2 Stretched 
exponential time dependence with c<1 in photoconductors was 
first observed by Merle Scharfe of Xerox in measurements of the 
transient photocurrent of amorphous As

2
Se

3
 as a function of time.3 

Albert Buettner, in work on the photodischarge of organic 
photoconductors begun at Eastman Kodak, observed that the 

photoconductor voltage as a function of exposure E for some 
organic photoconductors follows a stretched exponential with c>1.4  
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Figure 1. Three related decay functions. The stretched exponential with c<1 
and c>1 compared to exponential decay with c=1. 

At long times, the KWW function with c<1 is greater than the 
exponential function, corresponding to slower decay, and the 
Buettner function with c>1 is less than the exponential, 
corresponding to faster decay. Most explanations of the behavior 
for c<1 or c>1 for photoconductors5 and other systems assume that 
there is an a priori distribution of decay times or decay paths. The 
behavior for c<1 may also have a probabilistic component 
resulting from early decay events making later decay events less 
likely to occur. The behavior for c>1 may have a probabilistic 
component resulting from early decay events making later decay 
events more likely, similar to a log-jam for which removing a few 
logs makes the whole pile collapse.  

Example Systems 
Model systems in which exponential or stretched exponential 
relaxation occur include a capacitor discharging through a resistor, 
a photoconductor discharging, and gas discharging from a 
pressurized vessel through a hole or membrane, as shown in Fig. 2.  
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 (c)  
Figure 2. Model systems (a) capacitor discharging through a resistor, (b) 
photoconductor discharging, and (c) gas escaping from a pressurized vessel. 

These systems are in equilibrium until a switch is thrown, an 
exposure is made, or a valve is opened, which starts relaxation to 
another equilibrium state. Decay of the capacitor C is affected by 
the resistor R, decay of the photoconductor voltage is affected by 
the presence of traps, and the escape of the gas from the vessel is 
affected by the characteristics of the hole or membrane. 

The Significance of c 
Differential Equation for the Stretched Exponential 
A general differential equation for decay can be written by 
eliminating constant k from Equation (2) with Equation (1). 

[ ])0(/)(ln)(
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expexpexp
exp ftftf
t
tf
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∂

∂
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Although k does not appear explicitly as a constant in this 
equation, f

exp
(t) = Ae-kt is a solution. 

The stretched exponential
cktetf )()( −= is a solution of the 

differential equation:  
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The differential equations for the stretched exponential and 
Equation (4) for exponential decay differ only by proportionality 

constant c. In the limit c→1, f(t)→f
exp

(t) and both differential 
equations become identical. Both differential equations are linear: 
if f(t) is a solution, then Af(t) is also a solution. Of course, other 
variables can be substituted for t, such as exposure E.  

Formulation in Terms of Entropy 
The differential equation for the stretched exponential, Equation 
(5), can be rewritten as:  

[ ] [ ])0(ln)()(ln)()( ftcftftcf
t
tft −=

∂
∂

 (6) 

where [ ])(ln)( tftf  has the form of a generalized entropy.6 
Assuming that the quantity being measured, such as 
photoconductor voltage or current, is related to the number of 
particles or charges N present in the portion of the system under 
consideration, with N>>1 initially, then for N distinguishable 
particles or decay paths the fundamental entropy S

F
(N) is the 

natural logarithm of the number of accessible states:7 

)ln()!ln()( NNNNSF ≈=   (7) 

resulting in:  
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where the conventional entropy S and the fundamental entropy S
F
 

are related by S = k
B
S

F
, S

F
(0) is the initial entropy N

0
ln(N

0
) of the 

portion of the system under consideration, or the subsystem, 
ckteNtfNtN )(

00 )()( −== , and S
F
(t) is the entropy that this 

portion of the system would reach if stopped at time t. Although 
the entropy of the entire system will increase or possibly remain 
unchanged, the entropy of the subsystem that is relaxing will 
typically decrease as particles or charges leave and it approaches a 
simpler configuration. For example, discharging a capacitor 
through a resistor increases the entropy of the system due to 
heating of the resistor, but the entropy of a discharged capacitor is 
less than that of a charged capacitor. 

Transition Probabilities and c 
The probability p(t) that a single particle will decay or leave the 
subsystem is given by equation  

[ ])0(/)(ln
)(
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t
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tN
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for 
ckteNtfNtN )(

00 )()( −== . The absolute value signs are 
required to make p(t) positive, as probabilities are between 0 and 1. 
Note that for exponential decay with c=1 for a system described in 
terms of the number of particles in the system, p(t)=k. Defining 
fundamental entropy per particle s

F
 = S

F
/N ≈ ln(N), the transition 

probability at t=0 can be found from:  
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The transition probability at t=0 for a particle to leave the 
subsystem is c times the magnitude of the rate of change per unit 
time of the fundamental entropy per particle. 

The Chemical Potential and c 
In a physical system where the distribution of the number of states 
as a function of energy is determined by temperature T, (in other 
words, for most microscopic systems) the behavior at t=0 can be 
used to estimate thermodynamic quantities, such as the chemical 
potential. The chemical potential is related to the fractional change 
of the number of accessible states with a change in the number of 
particles, and the chemical potential µ is defined as:8 
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the chemical potential can be rewritten as: 

0

)()(

=




 +

∂
∂

−=
t

F
F

B ts
N
tsNTkµ   (14) 

The derivative ∂s/∂N can be evaluated from the transition 
probability, Equation (11) 
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yielding: 
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Removing the absolute value signs, it is required, as c>0 and N>0, 
that:  
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The chemical potential µ can be expressed in terms of c as: 
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Example System: The Ideal Gas 
An extremely general form of entropy has been used in the 
preceding, motivated by the desire to explain the behavior of 
systems (photoconductors) with c<1 and c>1. The ideal gas 
provides an opportunity to examine another “real” system. 

Particles Escaping from a Pressurize Vessel 
A monoatomic ideal gas in a pressurized vessel escaping slowly at 
constant T through a small hole, as shown in Figure 2 (c) has no 
structure and any particle has an equal probability of escaping. 
Consequently, it is expected that the number of particles in the 
vessel, or the pressure, for example, will decrease exponentially 
with time and that c=1. The entropy S

F
(N,T,V) of a monoatomic 

ideal gas is given by the Sackur-Tetrode equation9  
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and, from Equation (11) for µ/k
B
T,  
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where s
F
=S

F
/N has the form shown below,  
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and consequently, 

NN
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∂
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  (24) 

By inspection, comparing Equation (22) with Equation (20) for the 
case ∂s/∂N<0 [shown in Equation (24)] clearly  

1=c  (25) 

for the ideal, monatomic gas, as expected. 

Entropy Fluctuations in a Small Volume 
The entropy density is defined as S/V. For a small volume v of an 
ideal gas, entropy fluctuations are related to fluctuations of 
pressure p and density ρ via Equation (26)10  


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

 ∂
−∂=∂

ρ
ρpp
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vS

3
5

2
3

 (26) 

Using the ideal gas law, pv=Nk
B
T, Equation (26) reduces to 

Equation (24), consistent with c=1. 

Equations for the entropy of other real systems, if known, are 
expected to similarly yield appropriate values for c. 

Conclusion 
The form of the stretched exponential 

ckte )(− is consistent with 
several mechanisms. For c<1, initial decay events may 
probabilistically decrease the rate of subsequent events or, for c>1, 
initial events may increase the rate of subsequent events. There 

may also be predetermined distributions of decay times or decay 
paths. For probabilistic contributions to stretched exponential 
behavior, the exponent c in the stretched exponential 

ckte )(− is 
related to the chemical potential µ of the system at the onset of the 
decay process. The physical structure of systems exhibiting 
stretched exponential behavior and the statistical mechanics of 
how these structures are populated or depopulated probably both 
play a role in the dynamics of these systems. 
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