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Abstract  

We have investigated a low-temperature growth process of 
vertically aligned carbon nanotubes on a normal glass plate, 
which is applicable to the preparation of large-sized field 
emission devices. The development involves the preheating 
of a carbon source gas and the use of binary-layered metal 
catalysts. We have found that the preheating at 700°C 
enhances the reactivity of a carbon source gas of acetylene 
and contributes to the decomposition of the gas in high 
efficiency on the surfaces of the catalysts heated even at 
450°C. For the catalysts, we have examined Fe/Al, Fe/Ti and 
Co/Ti. It is found that the Al base layer enhances the reaction 
of Fe but the Ti base layer does not. The combination of Ti 
base layer with Co instead of Fe is effective for growth of 
aligned nanotubes at a low temperature. It is also found that 
the precarbonization of catalysts is effective for Fe related 
catalysts to enhance their reaction. For Co/Ti catalysts the 
thickness is an important factor and thinner one is effective. 
The field emission properties of the low-temperature grown 
nanotubes have been demonstrated. 

Introduction 

Carbon nanotubes (CNTs) have a high potential as a field 
emission electron source because of their small radii of apex 
and high aspect ratios.1 They can be applied to charging 
devices for imaging processes in addition to cathodes of 
electron microscopes, flat panel displays,2,3 cathode-ray-tube 
lighting elements,4 and vacuum power switches5 and so on. 
Since CNTs have a honeycomb structure with strong 
chemical bonds of carbon to provide long-lifetime devices, it 
is very significant from the global environmental point of 
views to realize the electron sources of CNTs. Chemical 
vapor deposition (CVD) processes are widely adopted to 
prepare CNTs, especially for vertically aligned CNT arrays. 
The growth temperature is typically 700°C, which is too 
high to be applied to the low-temperature fabrication 
process required for large-sized field emission 
devices with glass substrates (the softening point of 
550°C).6,7 

In this work, we have developed a low temperature CVD 
process of vertically aligned CNT arrays and examined their 
field emission properties. 

Experiment 

The growth of vertically aligned CNTs was examined on Si 
substrates by thermal CVD with catalysts of binary-layered 
metals such as Fe/Al, Fe/Ti and Co/Ti as shown in Fig. 1. 
Precarbonized ones of these catalysts were also prepared by a 
condition of C2H2of 30 sccm diluted with He of 230 sccm at 
500°C for 30min. For Co/Ti the layered films with different 
thicknesses of 4 nm/4 nm, 2 nm/2 nm, 1 nm/1 nm and 0.5 
nm/0.5 nm were examined. In order to preheat the reaction 
gas, the two-zone electric furnace was used as shown in Fig. 
2, where the front zone is a preheating area kept at 700°C 
and the rear zone is a growth area kept at a temperature 
≤550°C. The temperature of the reaction gas after the front 
zone was estimated to be less than 200°C. The reaction gas 
was the same as used for the precarbonization process. The 
growth time is 5 minutes. We also changed the growth 
temperature from 450 to 550°C to investigate the 
temperature dependence of CNT growth. For the 
measurement of the field emission, the CNT array grown on 
a Si substrate was used as a cathode and a phosphor-coated 
ITO glass plate as an anode, where a gap between the two 
electrodes was set to be 150 µm. 
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Figure 1. Structure of examined three kinds of catalysts formed on 
silicon substrates. 

 
Figure 2. Schematic diagram of apparatus for growth of vertically 
aligned CNTs. 
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Resuts and Discussion 

Development of Catalysts 
 The CVD process at 550°C using three kinds of 
catalysts without the preheating of the reaction gas resulted 
in the growth of CNTs only for Co/Ti but not for Fe/Al and 
Fe/Ti. However, the grown CNTs are randomly aligned. The 
preheating of the reaction gas, i.e. thermal excitation of 
molecules, effectively enhanced the reaction of C2H2 with the 
catalysts: CNTs were grown for the catalysts of Fe/Al, 
although they are randomly aligned. In the case of Co/Ti 
vertically aligned CNTs were grown. However, Fe/Ti did not 
work to grow CNTs even using the preheating gas. Figures 
3(a) and 3(c) shows the scanning electron microscope (SEM) 
images of the CNTs grown using Fe/Al and Co/Ti with the 
preheating gas, respectively. 
 

 

Figure 3. SEM images of CNTs grown at 550°C using Fe/Al 
catalysts ((a), (b)) and Co/Ti catalysts ((c), (d)) with ((b), (d)) and 
without precarbonization at 500°C ((a), (c)) 

 
 
 Figure 4 shows the atomic force microscope images of 
three catalysts shown in Fig. 1 after the carbonization. It is 
clearly seen that the layered films of Fe/Al and Co/Ti change 
to uniformly distributed particles with the size of ~10 nm. 
On the other hand, the clusters with sizes of a few hundred 
nanometers consisting of small particles appeared for Fe/Ti. 
Taking into account of the fact that the particle formation 
from a film catalyst is essential to produce CNTs, this 
indicates that Fe/Al and Co/Ti work effectively but Fe/Ti 
does not, as is mentioned above.  
 For the beginning stage of CVD it is believed in general 
that hydrocarbon molecules are dissociated at the surface of 
particle catalysts and carbon atoms are absorbed into the 
particle catalysts and also migrate on the surface of the 
particle catalysts. Carbon atoms, which are fed from the 
supersaturated bulk of the particle catalysts or migrating on 
the surface of the particle catalyst, form a cap of CNT. This 
is the first step for the growth of CNT. At a low temperature, 

being supersaturated to contribute to the cap formation is 
time consuming, because of a low diffusion velocity of 
carbon atoms. The migration velocity of carbon atoms is also 
low, which makes the cap formation difficult. Thus the 
catalyst particles are covered with stacked carbon, i.e. 
amorphous carbon to be inactive. If carbon atoms were 
already included inside the catalyst and ready to contribute 
to the cap formation, lowering the growth temperature would 
be possible. Based on this consideration we applied the 
carbonized catalysts to the CVD process. 
 

 

Figure 4. AFM images of respective three kinds of catalysts 
illustrated in Fig. 2 after carbonization at 500°C. Lower figures 
show the cross section along a line A-B in the corresponding 
images. 

 
 

Table I. Results of growth of vertically aligned CNTs using 
different catalysts with and without preheated gas and 
precarbonization. 
 Fe Fe/Al Fe/Ti Co/Ti 

Preheating •
 

• 
 

• 
 

• 
 

• 
 

• 
 

 • 
 

• 
 

Precarboniza
tion 

 • 
 

 • 
 

 • 
 

  • 
 

CNT growth X ∆  X Ο  - - X ⊕ ∆  

⊕  aligned, Ο  aligned with amorphous, ∆  less aligned with 
amorphous, X random, - no CNTs 

 
 
 
Vertically aligned CNTs were grown for Fe/Al, 

although covered with amorphous carbon layer. On the other 
hand, in the case of Co/Ti the alignment of CNTs was 
degraded and in addition they were covered with amorphous 
carbon. These results are also shown in Fig. 4. Our 
consideration works well for Fe/Al but for Co/Ti. 
Ineffectiveness of the precarbonization for Co/Ti is not 
unclear. This carbonization condition might not be adequate 
to Co/Ti.  

All of results are summarized in Table I, where the data 
of the conventional catalyst of Fe, which are not described in 
detail, are also listed as a reference. It is noted that adopting 
the binary-layered structure with Al increases the activity of 
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Fe but the combination with Ti inactivates Fe. The 
inactivation of Fe might be caused by its high solubility to 
the other metal in nanosized condition. 

Based on the results that the combination of preheating 
the reaction gas and using binary-layered catalysts of Co/Ti 
is most effective for the growth of vertically aligned CNTs at 
a low temperature of 550°C, we investigated the dependence 
of the thickness of the catalyst and the growth temperature 
on the length and configuration of grown CNTs. Figure 5 
shows the average length of vertically aligned CNTs as a 
function of the each layer thickness of Co/Ti. It is found that 
the length of CNTs increases from 4 µm to 12 µm with 
decreasing the thickness of Co/Ti from 2 nm/2 nm to 0.5 
nm/0.5 nm. Furthermore, the CNTs have better orientation 
for thinner catalyst. The SEM image of the CNTs at a 
thickness of 0.5 nm/0.5 nm is shown in the figure. The 
CNTs are well oriented and also the amount of amorphous 
carbon is less than in the case of 4 nm/4 nm shown in Fig. 
3(c). 

 

 

Figure 5. Length of CNTs at 5min-source gas flow as a function of 
each layer thickness of the Co/Ti catalysts. 

 
 
 
Figure 6 shows the average length of the vertically 

aligned CNTs as a function of the growth temperature for 
Co/Ti of 0.5 nm/0.5 nm and the SEM image of CNTs grown 
at a temperature of 450°C. The length of CNTs decreases 
with lowering the growth temperature. As short as ~1 µm-
long CNTs were obtained at 450°C. It is clearly seen that the 
orientation of the CNTs is degraded and the amount of 
amorphous carbon is increased as compared with the CNTs 
at 550°C shown in the inset of Fig. 5 and their configuration 
is similar to that of Fig. 3(c). These results indicate that 
decreasing the catalyst thickness increases the activity of the 
catalyst and lowering the temperature decreases it. 

In order to bring the growth temperature down to 450°C 
with keeping a good configuration of aligned CNTs, 
optimization of the growth condition is still required. 
However, an oxidation treatment of CNTs described later 
practically enables us to apply the CNTs with amorphous 
carbon to the field emitters. In this sense the thickness of 

catalyst film and the growth temperature are parameters to 
control the length of vertical aligned CNTs. 

 

 

Figure 6. Length of CNTs at 5min-source gas flow as a function of 
growth temperature for Co(0.5nm)/Ti(0.5nm).  

 

Figure 7. I-V characteristics of field emission and SEM images of 
CNT arrays before (a) and after (b) the treatment at 500°C in air 
for 8 min.  

Field Emission Properties of Aligned CNTs 
 Figure 7(a) shows the cyclic current-voltage 

characteristics of field emission for the ~5 µm-thick CNTs 
array grown at 550°C using Co/Ti of 0.5 nm/05 nm. As 
prepared CNT array shows a turn-on voltage of ~350 V. The 
current increases steeply with increasing the applied voltage 
and reaches ~ 10-5 A/cm2 at 600 V. The turn-on voltage is 
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high as compared with the results measured for an array 
consisting of arc-discharge produced CNTs.8 

In order to improve the current-voltage characteristics of 
the field emission, we performed the oxidation treatment of 
the CNT array in a condition at 500°C in atmosphere for 8 
min. As shown in the inset of Fig. 7(a) where the SEM 
image of the surface of the as prepared CNT array is 
displayed, the density of CNTs is high. However, after the 
oxidation treatment the density decreased, which is shown in 
the inset of Fig. 7(b). The oxidation treatment removes 
amorphous components first and then pentagons usually 
located at the cap of CNT to close the end rather than 
hexagons forming a body of CNT, because the stress of the 
C-C bonding is higher in pentagons than in hexagon. This 
reduces the density of CNTs and also makes CNTs thin. The 
change in the surface of the CNT array is reflected to the 
current-voltage characteristics shown in Fig. 7(b). The turn-
on voltage is reduced to ~100 V. This value is lower than 
that of the arc-discharge produced CNTs and comparable to 
that of the CNT arrays prepared at 700°C and treated by a 
similar manner. 

Conclusion 

Vertically aligned CNTs were grown at temperatures below 
550°C by the method of thermal CVD with the preheating of 
the reaction gas and the thin binary-layered catalyst of Co/Ti. 
The length of CNTs is controlled by the thickness of the 
catalyst and the growth temperature. The low-temperature 
grown CNTs showed the field emission properties 
comparable to the CNTs grown at 700°C. 
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