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Abstract 

Time-Resolved spectroscopy is a powerful tool for 
investigation of photogeneration and photoconduction 
mechanism in layered organic photoreceptors because it can 
directly detect transient species in each step. So far, we have 
measured the transient absorption spectra of layered organic 
photoreceptors using azo pigments as charge generation 
materials (CGMs). As an extension work of our previous 
study, we applied this technique to photoreceptors using 
titanyl phthalocyanines (TiOPcs) as CGMs. For 
photoreceptors containing TiOPcs and CTMs, we obtained 
almost the same transient absorption spectrum as we 
observed in azo-CGM/CTM layers. However, TiOPcs gave 
weak transient absorption even without CTMs, whereas azo 
CGMs did not. We also found that the response to external 
electric field largely depended on the crystalline phase of 
TiOPc. It is interesting that these results strongly correlate 
with the photocarrier generation mechanism and the 
sensitivity of photoreceptors. These experimental results are 
discussed in connection with photocarrier generation 
mechanism. 

Introduction 

In xerographic printing using organic photoreceptors, 
photocarrier generation and transport processes play 
important roles to determine the performance. In the 
microscopic view, photocarrier generation and transport 
processes consist of many complicated processes (exciton 
formation, migration, excited state electron transfer, 
recombination, and trapping), and each step contributes to 
the sensitivity of photoreceptors. In order to design materials 
and formulations for better photoreceptor, it is very helpful 
to connect the performance with these elementally processes. 
However, these processes have not been fully understood in 
spite of a lot of studies. 

Recently, we have reported that transient absorption 
method in near-IR region is a powerful tool to investigate 
photocarrier generation process in layered organic 
photoreceptors.1 In this method, we detected the transient 
absorption of cationic species of CTMs with our highly 

sensitive time-resolved absorption system. From the decay 
dynamics, we presumed that these cationic species decayed 
through both the migrations of holes in the CTL and charge 
recombination between a CTM cation and a CGM anion. 
The photoreceptors studied in the previous work were 
layered ones using azo pigments as CGMs and hydrozone 
compounds as CTMs. In an azo-hydrazone photoreceptor, 
carrier generation is largely dependent on the CTM 
combined and occurs even under no electric field.1,2 However, 
in some organic photoreceptors, carrier generation is affected 
also by external electric field and presence of impurities such 
as oxygen. It is known that these effects become prominent 
when we use phthalocyanines as CGMs. These facts indicate 
that carrier generation mechanism is partially different 
between phthalocyanine-based and azo-based CGMs. In this 
paper, we apply the transient absorption method to 
photoreceptors using titanyl phthalocyanines (TiOPcs) as 
CGMs to compare the carrier generation process with that of 
azo-hydrazone photoreceptors. 

The photocarrier generation yield of TiOPc depends on 
the crystal structure. Indeed, many studies have tried to 
reveal the relationship between the polymorphism and 
photoconductivity.3-6 From xerographic measurements and 
X-ray powder diffraction patterns, Fujimaki and co-workers 
showed that TiOPc(IV), often referred to as TiOPc-Y, is 
more sensitive than TiOPc(I).3 Popovic and co-workers have 
intensively studied the carrier generation mechanism in the 
different crystalline forms of TiOPc using electric field 
induced fluorescence spectroscopy and time-resolved electric 
field induced fluorescence spectroscopy.4,5 They concluded 
that one distinguishing characteristic of TiOPc(IV) is the 
contribution to photocarrier generation from the trapped state, 
when compared with TiOPc(I). Although their 
measurements have clearly showed the difference in the 
behavior of the excited state of each crystalline form, they 
were not direct observation of carrier species. In 
time-resolved fluorescence study, the monitored species are 
CGM excitons, which are not carrier species , but just 
precursors of charge transfer reaction between a CGM and a 
CTM.  

One of the advantages of transient absorption method 
over time-resolved fluorescence is that it can detect transient 
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species that does not emit fluorescence, such as ionic species 
of CTM. As mentioned above, we can detect the transient 
absorption of cationic species of CTM very sensitively after 
pulse excitation. Here we report our transient absorption 
study for photoreceptors using TiOPcs as CGMs. We present 
the difference in carrier generation by different crystalline 
forms, also with the effect of external field. 

Experimental 

Sample Preparation 
We show in figure 1 the molecular structures of CGMs 

and CTMs used in this study. CGMs were phase I TiOPc, 
phase IV TiOPc, and azo-CGM1 as a reference. CTMs were 
hydrozone type one (CTM1) and arylamine type one 
(CTM2). The CGMs were dispersed in a poly(vinylbutyral) 
matrix (50%wt) and the CTMs were dissolved into this 
solution. The weight ratio of CTM to CGM was 1:1. This 
solution was spin-coated on a CaF2 plate. We used a plate 
coated with ITO electrodes shown in figure 2 to measure the 
signal under electric field. 
 

 

 

Figure 1. Charge generation materials (CGM) and the charge 
transport materials (CTM) used in this study. 

 

50 µm 

50 µm 

50 µm 

 

Figure 2. ITO electrode coated CaF
2
 plate used for the 

measurement under electric field. 

The layers prepared in this study were not dual layers 
but single layers, in which CGMs and CTMs were dispersed 
together. However, these are appropriate systems for 
investigation of initial charge generation, because 
photocarriers are generated at the interface between the CGL 
and the CTL in dual layer systems, where electron transfer is 
occurred between a CGM and a CTM.7 

Transient Absorption 
The detail of the experimental setup for time-resolved 

infrared absorption is shown elsewhere.8,9 For an excitation 
pulse, we used frequency-mixed output  (wavelength 
tunable, 120fs pulse) of the OPG/OPA pumped by an 
amplified Ti:Sapphire laser. The pulse energy was varied in 
the range 0.1 - 2 µJ at the sample point (3 - 60 µJ / cm2). A 
probe light (emitted from the MoSi2 source) was focused on 
the sample plate with an ellipsoidal mirror. The transmitted 
light was dispersed in a monochromator of 50 cm focal 
length and the monochromatic output was detected by an 
MCT (mercury-cadmium-telluride) detector. The MCT 
output was amplified in AC-coupled amplifiers and 
accumulated in a digital sampling oscilloscope (Lecroy, 
LT342L) as a function of delay time at a fixed wavelength. 
The temporal profiles were reconstructed to transient IR 
absorption spectra at different delay times. The time 
resolution was about 50 ns, which was determined by the 
response of the detector. Transient absorbance change as low 
as 10-6 was detected by signal averaging at 1KHz.  
Transient absorption measurements were conducted under 
desired applied voltage. All experiments were carried out 
under air. 

Results and Discussion 

When we excited CGM/CTM combined layers by the laser 
pulse that only CGM can absorb (800 nm pulse for TiOPc, 
525 nm pulse for azo-CGM1), a broad transient absorption 
spectrum was observed in the near-IR range. Figure 3 shows 
the transient absorption spectra of TiOPc (IV)/CTM1 or 
CTM2 layers. The transient absorption spectra of 
azo-CGM1/CTM1 or CTM2 layers are also shown as a 
reference.  
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Figure 3. Transient absorption spectra of TiOPc(IV) /CTM1, 2 and 
azo-CGM1/CTM1, 2 layers at 1 µs after a pulse excitation. 
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In this measurement, we applied constant voltage when 
TiOPc(IV) was used as CGM, whereas no voltage was 
applied for azo-CGM1. In the previous paper, we ascribed 
this transient absorption to the cationic species of CTMs for 
azo-CGM1/CTM1 or CTM2 layers. The cationic species of 
CTM give various transient absorption depending on the 
degree of aggregation.1 This transient absorption arises from 
charge resonance band.10 

In figure 3, the shape of spectra for TiOPc/CTMx and 
azo-CGM/CTMx (x=1 or 2) were roughly the same. This 
fact means that observed transient absorption can be 
assigned to cationic species of CTMs also for TiOPc/CTMx 
layers. The small variation in spectra between TiOPc and 
azo-CGM1 implies that the influence of a CGM anion on a 
CTM cation spectrum is different between these two CGMs. 

To investigate how polymorphs affect the charge 
generation, we measured the transient absorptions of TiOPc 
(I)/CTM1 and TiOPc(IV)/CTM1 layers under the same 
experimental condition. The spectra are depicted in figure 
4A and 4B. The shapes of the spectra were almost the same 
because monitored species was derived only from CTM1 
(cationic species of CTM1). However, the intensities of the 
spectra were considerably different. The transient absorption 
spectra shown here were measured applying 400V to the 
sample plate. Under this condition, the transient absorption 
spectrum of TiOPc(IV)/CTM1 was more than twice as large 
as that of TiOPc(I)/CTM1. This fact means that more than 
twice cationic species of CTM, that is delocalized holes in 
CTM, emerge at that time (1 µs after pulse excitation) in 
TiOPc(IV)/CTM1 compared with TiOPc(I)/CTM1. 
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Figure 4. Comparison of transient absorption spectra between a 
TiOPc(I)/CTM1 layer (A) and a TiOPc(IV)/CTM1 layer (B) under 
the same experimental condition (bias = 400 V). The transient 
absorption spectra of TiOPc alone layers are also shown. 

Another interesting observation in figure 4 is that TiOPc 
gave transient absorption even without CTMs. (For a 
reference, we have carrier out the transient absorption 
experiment of an azo-CGM1 alone layer. Azo-CGM1 gave 
no transient absorption without CTMs.) Although this 
transient absorption appeared broadly in the near-IR region, 
the shape was fairly different from cationic species of CTM1. 
One of the most probable species that give this transient 
absorption is a TiOPc cation. It is known that charge 
generation occurs in TiOPc without the assistance of CTM. 
In that case, impurities such as adsorbed oxygen are 
considered to work as an electron acceptor. Based on these 
facts, it is not strange that considerable TiOPc cations 
remain at 1 µs after pulse excitation. On the other hand, if 
CTMs co-exist in the layer, TiOPc cations (or holes on 
TiOPc) may undergo rapid charge transfer. (< 50ns, not 
detectable in the present experiment) Consequently, when 
we measure transient absorption spectrum of a TiOPc/CTM 
layer, there is no or relatively small contribution from TiOPc 
cations, so that cationic species of CTMs are mainly 
detected.  

Figure 5A and 5B show the decay of the transient 
absorption at 1400 nm for TiOPc(I)/CTM1 and TiOPc 
(IV)/CTM1. The dependence of signals on voltage is also 
shown. Surprisingly, the signal was almost independent of 
the voltage applied (electric field) in TiOPc(I)/CTM1, 
whereas considerable dependence was observed in 
TiOPc(IV)/CTM1.  
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Figure 5. Transient absorption decay of a TiOPc(I)/CTM1 layer 
(A) and a TiOPc(IV)/CTM1 layer (B) at 1400 nm. The applied 
voltage was 0, 200, or 400V. 
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Figure 6. Dependence of the initial intensity of transient 
absorption on applied voltage for TiOPc(I)/CTM1 and 
TiOPc(IV)/CTM1 layers. 

 
 
 
 
As the electric field increased, the transient absorption 

became larger and the decay became slower in TiOPc(IV). 
We show in figure 6 the dependence of the initial intensity 
on applied voltage for TiOPc(I)/CTM1 and TiOPc(IV)/ 
CTM1. At zero voltage, the initial intensity of the transient 
absorption was nearly the same between these two layers. 
When we added the voltage to the layer, the intensity 
remained constant in TiOPc(I)/CTM1. In TiOPc(IV)/CTM1, 
the increment of initial intensity exhibited approximately 
quadratic dependence on applied voltage. 

Figure 6 tells us the difference of the response to electric 
field between phase I and IV TiOPc. There are two 
components in the transient absorption; one is the 
component that is independent of electric field and another is 
the component that is quadratically dependent on electric 
field. The transient absorption is contributed from the both 
components in phase IV, but only from the first component 
in phase I. In the transient absorption measurement for a 
CGM/CTM combined layer, the signal intensity is 
proportional to the quantity of cationic species of CTM. 
Therefore, the intensity of transient absorption is a good 
indication of the degree of ‘real’ charge generation. From 
this point of view, figure 6 shows there are two components 
(paths) in charge generation; one is electric-field-unaided 
charge generation and another is electric-field-assisted 
charge generation. The difference in the degree of 
electric-field-assisted charge generation may be related to the 
fact that phase IV is much more sensitive than phase I as a 
photoreceptor. Now we are obtaining more experimental 
data for constructing the charge generation models to 
consistently explain our experimental results. 

Summary 

The transient absorption of photoreceptors using TiOPc as a 
CGM was measured to investigate photogeneration 

mechanism. In TiOPc/CTM layers, we obtained almost the 
same transient absorption spectrum as we had observed in 
azo-CGM/CTM layers. In addition, TiOPcs gave weak 
transient absorption even without CTMs. The most possible 
species that gave this transient absorption is cations of 
TiOPc. These observations clearly show the charge 
generation mechanism is different between azo-pigments and 
TiOPc. 

We also found that the response to external electric field 
largely depended on the crystalline phase of TiOPc. The 
transient absorption signal was almost independent of the 
electric field in phase I, whereas considerable dependence 
was observed in phase IV. It was interesting that these 
results strongly correlated with the sensitivity of 
photoreceptor. 
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