

Printing on a Post Processor Using UP3I in an
AFP Environment

Jean Aschenbrenner, Reinhard Hohensee and David E. Stone
IBM

Boulder, Colorado

Abstract

In a complex high-end printing environment, some
applications require that some (special) data be printed on a
post processor. This paper will discuss a new architecture
which uses the Universal Printer Pre- and Post-Processing
Interface (UP3I) Print Data interface to print objects on a
post processor in Advanced Function Printing (AFP)
environments.

Two data streams are involved:
• Data is passed from the host (application) to the printer

using AFP object containers.
• Data is passed from the printer to the post processor

using a new extension of the UP3I interface.

The printer control unit must convert from one format to

the other. It must also translate locations for the post
processor.

As an example, an application might print most of its
data on a black/white printer and add highlight color,
invisible ink, or MICR toner to the page using a post
processor. The capability of each post processor can vary and
the data format and control required will be different.

The architecture has been defined to allow for this
variability. In the AFP environment, the format of the data is
hidden within the AFP object container and does not need to
be understood by the print server or printer.

Introduction

Future post processors will have more capabilities and there
is a demand for more sophisticated ways of delivering data to
be printed by those post processors.

 Post processors have traditionally printed using MICR
ink or a highlight color. Now, some print using invisible ink
or multiple highlight colors. It is expected that post
processors will have the capability to store multiple canned
images or to parse data streams with a limited, well-defined
syntax. Because the post processor must print sheets as fast
as the main printer, it is not expected that it will do complex
processing such as full-color processing or handling all of a
print data language. Some post processors will be able to
print everywhere on the sheet, whereas others may be able to
print in only narrow swaths. Obviously, capabilities vary.

There are now more ways that applications want to use
post processors. Printing MICR text was a common use in
the past. Possible new uses include:
1. Printing bar codes in invisible ink
2. Printing highlight-colored bars which could be part of a

bar chart or could be used to separate data. (The
location, width and height would define what and where
to print.)

3. Printing highlight-colored logos and icons. (These could
be images stored in the post processor. An image ID and
location would define what and where to print.)

4. Printing a limited number of canned text strings in
highlight color. They could be used for marketing
messages or headers. The text may be in varying fonts,
font sizes and boldness. (These text strings could be
stored as images in the post processor and processed as
in #3.)

Currently there are two processes used by AFP printers

to send data to a post processor. One is used for very simple
data and the other is used for complex data.

Simple MICR data is passed to a post-processing device
over a Type II Interface. The data being sent is a sequence of
entries of the form:

x-position, y-position, number of bytes following, data.

X-position and y-position are given in 1/72000 of an
inch.

The Type II document states: “The data (its format and
content) are undefined by this specification, unless noted
otherwise. The data is generated by the application program
specifically for the particular post processor that is attached.
The form and content is determined by the application and
the needs and capabilities of the post processor.”

This interface is used to send data to the Troy MICR
post processor and the data is defined to be a string of text
characters. There must be an understanding between the
application generator and the post processor about which
font is to be used, since no font information is passed over
the interface.

The printer receives Intelligent Printer Data Stream
(IPDS) commands. It identifies which data to send to the

IS&T's NIP20: 2004 International Conference on Digital Printing Technologies

333

post processor by noting a MICR flag in the font. It does
some error checking on the characters and can identify off-
page errors for the printing characters. It does not print the
characters but rather puts them into a buffer which is later
sent to the post processor. AFP mixing rules are not followed
for these characters: They do not erase data under them and
they are not erased if data is placed over them.

 Complex data is printed by the Infoprint Hi-Lite Color
post processor using up to 3 different highlight colors. If a
data object’s color is specified to be Highlight #1, #2 or #3
in the IPDS data, it is printed on the post processor. For each
of the three colors, the printer renders the data into a full-
sized sheet bitmap. These sheet bitmaps are compressed and
sent to the post processor. This can require transmitting a
large amount of data so a dedicated, fast control/data
interface is established directly between the printer and post
processor.

 In 2003 we identified a need for handling somewhat
complex data, in various forms, in a flexible manner. The
concept of an agreement between the application and the
post processor was critical. This would allow new
applications and enhanced post processor capabilities
without requiring a change to the print server or printer
software.

 UP3I had recently become the industry-standard online
post-processing architecture. It specified a UP3I Print Data
Triplet but, originally, there was not a useful definition of
how it could be used. During 2003 and early 2004, we
developed a more complete definition of UP3I Print Data
which was modified and accepted by the UP3I consortium.
We also expanded the AFP architecture to allow print data
from the application to be passed through the print server
and printer and out to the post-processing printer.

A key part of the definition is a Print Data Format ID
(PDFID) which allows multiple data formats to be used but
identifies which one is used. The PDFID is transmitted with
the data in the Print Data Triplet. This allows some control
over the agreement between application and post processor
in that the PDFID must be registered and defined within the
UP3I architecture. In addition, the format ID allows the
format of the Print Data to be entirely transparent to the print
server and the printer. Four possible uses of post-processing
printers were listed above. Each one of those could be
implemented using a different format id.

Print Data for the Post Processor in AFP

The application program that creates the document to be
printed generates the document in Mixed Object Document
Content Architecture (MO:DCA) format. The MO:DCA
architecture defines the AFP page description language. The
print server then converts the AFP page description language
into the Intelligent Printer Data Stream (IPDS) format. The
two data streams have the same constructs and concepts but
the architecture terminology is slightly different. This paper
will discuss the concepts only once, using generic or IPDS
terminology but the reader should understand that parallel
constructs apply in the MO:DCA architecture.

 An AFP document contains page objects, which in turn
contain data objects. These data objects define the
information to be presented on the page, such as text,
graphics, image, and bar code. One form of data object is a
generic data-object wrapper called an object container. This
object container has basically the same characteristics as
other AFP objects such as image or graphic objects.

Application

Development

MO:DCA

PRINT SERVER

IPDS

Rasterizer Print

Head

UP I
3

PRINTER

POST

PROCESSOR

Figure 1. Flow of UP3I data

The print data that is to be passed to a UP3I device is
generated by the application program in an object container.
The object container has control (header) information and
data. The data portion includes the Print Data Format ID
(PDFID) and the actual data to be printed. The data portion
is precisely the data that is eventually carried in a Print Data
Frame on the UP3I interface and its syntax is defined by the
UP3I specification. Thus, this data can be copied directly into
the UP3I Print Data Triplet and does not need to be
understood by the printer.

The object container control includes:
1. An object area which has:

• A location which is given as an offset from the page
or overlay origin.

• Width and height
• Optionally, information that allows the object area

to be colored or causes all underlying data to be
erased.

IS&T's NIP20: 2004 International Conference on Digital Printing Technologies

334

2. An object presentation space which has:
• A mapping option which specifies how the object

presentation space is mapped into the object area.

AFP Object View

UP I Object View
3

Logical page or overlay
coordinate system

X or Xpg ol

Y or Ypg ol

Object area coordinate system
Xoa

Yoa

Object area

Object area
orientation

Object area
offset

UP I coordinate system
3

Xob

Yob

Object presentation space

Object

U
P

3
I-d

efin
ed

m
ap

p
in

g

Figure 2. Conceptual Views

Mapping, Mixing and Locations

The data to be printed is generated in the object presentation
space. This is then mapped into the object area. The mapping

options available for other data objects include scale to fit,
position and trim, center-and-trim, and others. For a UP3I
Print Data object container, there is a special mapping
option, “defined by UP3I Print Data format ID,” which
indicates that the mapping is defined by the post-processing
printer. This is the only mapping option allowed for a UP3I
Print Data object container. (See Fig. 2.) The post-processing
device can use the object area location however it wishes,
although the use should be consistent given the PDFID. For
instance, the location could be used as the center location of
an image, as the bottom left start of a text string, or as the top
left corner of a bar code object.

 The printer is responsible for the object area of the
container. It processes the object area coloring, if specified,
and ensures that the AFP mixing rules are followed as it does
the processing.

 The post-processing printer is responsible for the object
presentation space. Since the print data is presented by a
UP3I device after the complete page is rendered by the
printer, the presentation container cannot mix with the
remainder of the page data according to the standard AFP
mixing rules. The AFP mixing rules require that an object is
mixed with the remainder of the page data based on the order
in which it is specified on the page. It would be very difficult
to follow this rule since the UP3I print data is rendered last
due to the physical configuration of the system. Therefore, in
AFP, a new type of mixing is defined for UP3I print data:

The print data is developed in its own presentation space by
the UP3I device in accordance with the Print Data format. It
mixes with the remainder of the page in a manner that is
defined by the print data format.

For example, one Print Data format might define the

mixing such that the data is printed with invisible ink that is
transparent with respect to any underlying data. Another
format might define the mixing such that, since a MICR ink
is used, characters printed are opaque and cover all
underlying data. The location of the object area must be sent
to the post processor. However, the location of the object
area is specified as an offset from the page or overlay. The
location specified to the post processor must be in relation to
the whole sheet. The location is specified as an offset from
the UP3I medium origin (which is the left corner of the
leading edge of the sheet). Therefore, the printer must
convert the locations. This is shown in Fig. 3. Further, the
units for the offsets differ. The printer must convert from
AFP L-units to 1/72000 inch (millipoints) which are the
units used by UP3I.

Object area width, height and orientation will be
converted to UP3I units and sent to the post processor but the
post processor is not required to use this information. The
application creating the data to be printed by the post
processor should typically assume that it will be printed as
received, without any rotation, since most post processors
will not be able to rotate data which they print. If the post

IS&T's NIP20: 2004 International Conference on Digital Printing Technologies

335

processor is able to rotate, a new PDFID can be defined that
specifies support for rotation.

Figure 3. UP3I Medium and AFP Object Origins

Print Data in UP3I

UP3I architecture specifies that, for each sheet sent, there
will be a Form Exit Frame which specifies operations to be
performed on that sheet. In addition, if print data is involved,
a Print Data Frame will be sent. The UP3I spec says “This
frame is typically used for additional printers … which need
a small amount of print data ...” Too much data could mean
that it does not reach the post processor in time to be printed.

The Form Exit Frame includes multiple triplets which
are self-identifying structures consisting of length, identifier
and data fields. There is one Form Exit Frame for each sheet.
It is passed along sequentially to all devices in the paper
path. The Form Exit Frame always includes:
• A Form Size Triplet which gives the paper length and

width.
• A Page/Set/Job Triplet Triplet which holds the

UP3I_PAGE_ID for each logical page on this form.
• Form Finishing Operating Triplets

If print data is being sent with the sheet, the Form Exit
Frame includes a Form Finishing Operating Triplet which
holds the following, along with other information:
• ID of the post-processing printer device which is to

receive the data
• Finishing Operation Type: Postprocessing Print (0x10)
• Finishing Operation Parameter: Print (0x0001)

The Print Data Frame is sent directly to the destination
post-processing printer. The destination device does not

forward it further. Thus, the Print Data Frame is destined for
exactly one printing device.
 The Print Data Frame includes these UP3I triplets:
• Paper Sequence ID Triplet: includes IDs of sending and

destination UP3I devices.
• UP3I_PAGE_ID Triplet: includes the UP3I_PAGE_ID

which identifies the page where printing should occur
• Print Location Triplet: location for print data plus

front/back-side indicator
• Print Data Triplet: holds the UP3I Print Data Format ID

as well as the print data. Maximum size possible is
64MB. It needs to be smaller than this for performance
reasons.

There may be multiple sets of UP3I_PAGE_ID, Print

Location, and Print Data triplets in one Print Data Frame.
 The printing post processor must be told where to

position the data. This information is in the Print Location
Triplet. The offset of the data to be printed is expressed in
millipoints (1/72000 inch) from the UP3I medium origin, x
(across the web) first, y second.

 For future extendibility, the following additional
information will be carried in the Print Location Triplet.

• Object area size: width & height in millipoints
• Object area orientation: 0, 90, 180 or 270 degrees

The printing post processor will determine if and how it

uses the location, size and orientation.
 The printer creates the UP3I triplets. It constructs the

Print Location Triplet using information from the object area
control. The ID and data in the object container are inserted
into the Print Data Triplet. The printer knows the ID of the
destination post processor printer since this ID was reported
by the post processor. It inserts that ID and the
UP3I_PAGE_ID into the Print Data Frame when it sends the
sheet.

Currently there is only one group of Print Data Format
IDs (PDFID) specified in the UP3I architecture. The PDFID
is 4-bytes long. The currently supported PDFID is:

X’BCy000xx’ — Bar Code (BCOCA) Support

 “xx” represents the supported bar codes (such as
Data Matrix, POSTNET, EAN 13)

 “y” represents the mixing rule for foreground data
of the post-processing printer (opaque, transparent,
or device specific).

This allows IPDS BCOCA objects to be sent directly to

the post processor, which must be able to parse the BCOCA
syntax.

Error Handling

The printer does not need to examine the print data in the
object container and it does not need to do any checking of
the data. The error handling process is complicated if an
error is found by the post processor, so it is acceptable,

IS&T's NIP20: 2004 International Conference on Digital Printing Technologies

336

although not required, for the printer to error check the data.
It is assumed that the application is designed for a particular
post processor with limited capability and that it will be
possible to thoroughly test the application before doing any
production runs.

 Syntax and position-check errors detected (by either the
printer or post processor) within a Print Data object have a
well-defined exception ID. Rules have been architected to
define the recovery actions required when the post processor
reports errors.

 The post processor will be set up to ignore errors or else
to stop printing. If printing stops, operator intervention will
be required. The UP3I interface allows the post processor to
send back some generic error indicators and a string of text
which can be used to diagnose the problem.

Post Processor Identification

The printing post processor announces its presence on the
UP3I interface in a UP3I Self Defining Field Frame. It reports
its device ID and identifies itself as a Front or Reverse side
Postprocessing Printer. It also tells which PDFIDs it
supports. This information is passed up to the print server in
the IPDS XOH-OPC (Obtain Printer Characteristics)
response. Thus the server knows that the post processor is
available and its capabilities.

 It is possible to connect multiple printing post
processors to one printer. For duplex printing, there might be
two printing post processors, one for each side. The printer
knows which side a particular object container is to be
printed on and it knows the device ID of the post processor
for that side. So it can route the UP3I Print Data to the
correct device.

Creation of Print Data by the Printer

This architecture does not preclude the printer from
generating the print data itself, without the use of object
containers, based on IPDS input. For instance, there might be
a post-processing device which prints text using MICR ink.
It recognizes data with the same format as that used on a
Type II interface but receives it as UP3I Print Data. Assume a
UP3I PDFID for this format has been architected. Now, the
printer could be modified to identify characters which use a
MICR font, create data which is formatted for the Type II
interface, and copy it into a UP3I Print Data Frame. Such a
solution requires changes to the printer and is not as flexible
as the object-container solution. But it may be useful in some
situations.

Conclusion

This paper discussed a way of sending print data to a post
processor in an AFP environment. The format of the data can
vary and is identified by a Print Data Format ID (PDFID)
which accompanies the data, but only the application and the
post processor need to understand that format.

 The UP3I interface provides an accepted, effective way
to send the print data from the printer to the post processor.
The use of object containers allows a conduit for UP3I Print
Data through the AFP system. Preparing the data to send
across the UP3I interface is easily accomplished and requires
only converting the print location and copying the PDFID
and print data. This allows for a flexible architecture where
the print server, the printer and the UP3I interface do not
need to change when a new data format is added.

 This architecture is able to support future post
processor capabilities and future application requirements.

References

1. UP3I Limited, Universal Printer Pre- and Post-Processing
Interface, Version 1.04 preliminary 5, June 2004.

2. IBM Corporation, Intelligent Printer Data Stream Reference,
S544-3417-06, November 2002.

3. IBM Corporation, Mixed Object Document Content
Architecture Reference, SC31-6802-06, January 2004.

4. IBM Corporation, IBM 3900 Page Printer Advanced Function
Post Processing Interface Specification, TR-82.0520, May
1993.

Biographies

Jean Aschenbrenner is a Senior Technical Staff Member
(STSM) in the Printing Systems Division of IBM in Boulder,
CO. She joined IBM in 1984 and did VLSI and card design
for the printer control engine. Since 1993 she has been
working on microcode and is part of the rasterizer team for
the high-end common control unit. She has coordinated work
on color management on IBM’s high-end color printers. Jean
received her B.A. in Mathematics from Mount Holyoke
College (1970), her M.A.T. from Wesleyan University in
Connecticut (1971), her B.S. in Electrical Engineering from
Colorado University (1983) and her M.S. in Computer
Science from National Technological University (1994). She
is a member of Phi Beta Kappa honor society and of IS&T.

Reinhard Hohensee received his BES degree from
S.U.N.Y. Stony Brook in 1970, and his MSEE and Electrical
Engineer degrees from Syracuse University in 1972 and
1977, respectively. He joined IBM in 1973 and had
development assignments on processors and I/O attachments
at the IBM Laboratories in Endicott, New York, in
Boeblingen, Germany, and at the T.J. Watson Research
Center in Yorktown Heights. Since 1985 Reinhard has been
with IBM Printing Systems in Boulder, Colorado, where he
has worked on printer controllers, printing architectures, and
color printing. He is currently an IBM Senior Technical Staff
Member responsible for the Advanced Function Presentation
(AFP) Architecture and for color system design.

David Stone is a Senior Data Stream Architect, a 29 year
veteran with IBM Corporation, and holder of advanced
degrees in Mathematics, Computer Science, and Business
Administration. Dave currently works with printer and

IS&T's NIP20: 2004 International Conference on Digital Printing Technologies

337

document data streams, bar code description and printing,
and font technologies used by IBM. Dave has worked on
several development efforts within IBM including banking,
tele-satellite communications, storage products, and printing.
He was a member of IBM’s first Print Services Facility

software development team and is currently responsible for
the Intelligent Printer Data Stream, Font, and Bar Code
Object Content architectures. Dave holds numerous patents
on print architecture.

IS&T's NIP20: 2004 International Conference on Digital Printing Technologies

338

	31884
	31885
	31886
	31887
	31888
	31889
	31890
	31891
	31892
	31893
	31894
	31895
	31896
	31897
	31898
	31899
	31900
	31901
	31902
	31903
	31904
	31905
	31906
	31907
	31908
	31909
	31910
	31911
	31912
	31913
	31914
	31915
	31916
	31917
	31918
	31919
	31920
	31921
	31922
	31923
	31924
	31925
	31926
	31927
	31928
	31929
	31930
	31931
	31932
	31933
	31934
	31935
	31936
	31937
	31938
	31939
	31940
	31941
	31942
	31943
	31944
	31945
	31946
	31947
	31948
	31949
	31950
	31951
	31952
	31953
	31954
	31955
	31956
	31957
	31958
	31959
	31960
	31961
	31962
	31963
	31964
	31965
	31966
	31967
	31968
	31969
	31970
	31971
	31972
	31973
	31974
	31975
	31976
	31977
	31978
	31979
	31980
	31981
	31982
	31983
	31984
	31985
	31986
	31987
	31988
	31989
	31990
	31991
	31992
	31993
	31994
	31995
	31996
	31997
	31998
	31999
	32000
	32001
	32002
	32003
	32004
	32005
	32006
	32007
	32008
	32009
	32010
	32011
	32012
	32013
	32014
	32015
	32016
	32017
	32018
	32019
	32020
	32021
	32022
	32023
	32024
	32025
	32026
	32027
	32028
	32029
	32030
	32031
	32032
	32033
	32034
	32035
	32036
	32037
	32038
	32039
	32040
	32041
	32042
	32043
	32044
	32045
	32046
	32047
	32048
	32049
	32050
	32051
	32052
	32053
	32054
	32055
	32056
	32057
	32058
	32059
	32060
	32061
	32062
	32063
	32064
	32065
	32066
	32067
	32068
	32069
	32070
	32071
	32072
	32073
	32074
	32075
	32076
	32077
	32078
	32079
	32080
	32081
	32082
	32083
	32084
	32085
	32086
	32087
	32088
	32089
	32090
	32091
	32092
	32093
	32094
	32095
	32096
	32097
	32098
	32099
	32100
	32101
	32102
	32103
	32104
	32105
	32106
	32107
	32108
	32109

