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Abstract Heading 

FM or stochastic screening is a popular approach to 
halftoning for many applications. The error diffusion 
algorithm delivers extremely good screen quality but at the 
price of a computationally-intensive runtime process. Point 
processes, using either dither arrays or bitmask sets, have 
efficient runtime requirements but often produce halftones of 
much lower quality. The generation of such screens usually 
involves starting with a random pattern and applying some 
simulated annealing process to gradually improve its 
characteristics. This paper proposes a method for generating 
stochastic patterns that employs a dot placement algorithm in 
which each dot is placed in a position “appropriate” for 
producing good stochastic output. The algorithm is then 
enhanced by applying a smoothing step at the end of each 
halftone pattern generation to adjust any dots that, due to the 
placement of later dots, are now in sub-optimal positions. 
Although the algorithm can be used to produce dither arrays, 
it is primarily aimed at generating bitmasks where the 
additional degree pattern freedom is exploited to improve 
pattern smoothness. The algorithm also permits second order 
stochastic patterns for use with imprecise print devices such 
as electro-photographic printers. 

Introduction 

In 1973 Bayer proposed an algorithm for rendering 
continuous tone images to bi-level devices that claimed to 
give optimum dither patterns.1 However, although the 
dispersion of dots within Bayer’s patterns might be 
theoretically optimal, the strong periodic artifacts are far 
from satisfactory. Three years later Floyd and Steinberg 
proposed the “error diffusion” algorithm.2 By delivering non-
deterministic, dispersed dot patterns it offered a marked 
improvement over Bayer’s artifacts, albeit at an increased 
processing cost. In 1987 Ulichney3 applied the term “blue 
noise” to such patterns on the basis of their power spectra 
and suggested ways to improve error diffusion to bring the 
power spectra closer to the presumed ideal. Since then many 
others have proposed ways to improve error diffusion output 
(for example, by using hexagonal sampling,4 or adding edge 
enhancement5). Such enhancements have allowed error 
diffusion algorithms to deliver very high quality halftone 

patterns. However, error diffusion remains fundamentally a 
computationally-expensive algorithm compared to a point 
process. 

In 1991 Sullivan6 proposed halftoning using a set of 
stochastic bit patterns, each of which is generated by starting 
with a random pattern and applying a software annealing 
process to gradually transform the noise from white to blue 
(utilizing the DFT domain to measure the quality of the 
pattern). While this technique produces good patterns for any 
given halftone, the lack of any positional relationship 
between halftone levels leads to false contours when 
processing image data. 

The following year Mitsa and Parker suggested a similar 
technique to Sullivan but adapted for generating dither 
arrays.7 The use of the dither array prevents the contouring 
issue of the bitmask set but imposes a constraint on dot 
placement that makes it difficult to achieve good blue-noise 
patterns throughout the dynamic range. Ulichney also 
demonstrated the generation of blue-noise patterns in dither 
arrays using a “void-and-cluster” method.8 Still using an 
annealing process, the method employs a Gaussian filter to 
identify holes and dot clumps and then transfers dots 
between. (Spaulding et al. have produced a useful review of 
these techniques.9) 

In comparison to the above halftoning methods that take 
an evolutionary approach to generation, the algorithm 
presented here takes its inspiration from error diffusion. The 
patterns are built up one dot at a time with the placement 
decision being influenced by current dot positions. (That 
said, the algorithm also incorporates a smoothing step for 
each halftone pattern, though still using the same technique 
as for initial placement.) 

Although the basic algorithm can be applied to the 
generation of dither arrays, it is preferred to create bitmask 
sets. This allows an extra degree of freedom in the pattern 
generation that can improve overall halftone quality (though 
care is needed to avoid introducing too much noise into 
images by the issue of false contouring). 

Algorithm Outline 

We wish to create a set of N bitmask patterns, each of which 
is of dimensions W×H. (There being one bitmask pattern for 
each represented halftone output.) The patterns will be 
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created from lightest to darkest. (For simplicity of 
presentation, it is assumed that a bit value of 0 is a white 
pixel and a bit value of 1 is a black pixel.) 

In addition to a matrix to hold the bitmask under 
construction an additional matrix of equivalent dimensions is 
maintained. Called the Noise Map it is filled with random, 
floating-point values in the range -1 to +1. These values are 
filtered to eliminate duplicates. 

To create a bitmask, the pattern is initialized to that of 
the previous completed bitmask (with the first bitmask being 
initialized to an empty pattern). The required extra dots for 
this halftone level are placed at suitable positions. Finally, a 
smoothing step is applied to the pattern to adjust dots that 
are in sub-optimal positions. 

To place a dot, a weight value is first calculated for each 
0 pixel. A set of candidates is then chosen where each 
candidate has a weight value within a defined tolerance of 
the minimum weight value. From this set is chosen the pixel 
position that has the least corresponding noise value from 
the Noise Map. That pixel is set to 1. 

The Weight Function 

The weight value of a pixel (W(x,y)) is the sum of the weight 
(w) exerted upon it by nearby dots (pixels of value 1). The 
actual equation used to calculate w is a matter of choice but 
in tests Eq. 1 has been found to give good results. (The 
Gaussian filter used by Ulichney8 would be an alternative.) 

 
RD

w
11 −=  (1) 

In Eq. 1 D is the distance between the pixel and the dot. 
In calculating D it is necessary to consider that the resulting 
patterns are repeated in a tile arrangement. For example, the 
delta along the horizontal axis is calculated by Eq. 2. 
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For small patterns it may be reasonable to include all 
dots in the W(x,y) calculation but for realistic sizes it is 
reasonable to restrict the area of interest to a neighborhood 
of the pattern centered on the pixel in question. In Eq. 1 this 
neighborhood is assumed to be a circle of radius R. Hence, 
the exerted weight (w) tends to zero at the edge of the 
neighborhood. 

The sizing of the neighborhood is clearly an important 
aspect of the algorithm. A smaller neighborhood reduces 
processing time but can introduce unevenness in the macro 
structure of the patterns. Also in light and dark tone patterns 
the minority pixels are widely dispersed so the neighborhood 
needs to be large enough to ensure a reasonable sampling. In 
comparison the mid-tones do not require a particularly large 
neighborhood because the dot density is high. It will also be 
appreciated that there is a finite limit to R as it cannot exceed 

half the dimensions of the bitmask, otherwise some dots will 
be counted twice in the sum (which will distort the patterns). 

By experiment it has been found that good results may 
be achieved if R is varied from ½ the dimensions at the tone 
extremes to ¼ the dimensions at the mid-tone. 

It will be appreciated that the first dot of the first 
bitmask will be placed at an arbitrary position within the 
mask (though as the mask is tiled this is irrelevant). If the 
foregoing algorithm is considered, it will also be apparent 
that the second dot will be placed randomly within the area 
of the mask not covered by the first dot’s weight 
neighborhood. Although it may be argued that a better 
algorithm is needed for this second dot this is only an issue 
at very small mask sizes (such as 16x16 or 32x32). At more 
practical sizes the extra noise of the second dot placement is 
insignificant (particularly after pattern smoothing is applied). 

The above algorithm has been found to produce very 
pleasing stochastic patterns. However, for certain output 
devices the mid-tones can appear “patchy” due to what 
might be termed “checkerboard” artifacts. (Such artifacts 
may be observed in classical error diffusion output3.) For 
these cases it is necessary to introduce a small amount of 
extra noise into the patterns. This is easily achieved by 
modifying the weight value according to the corresponding 
noise value from the Noise Map (N(x,y)). This is defined in 
Eq. 3. This includes a function f(t) that scales the noise value 
according to the current tone. 

 ( ))(),(1),(),( tfyxNyxWyxW ⋅+⋅=′  (3) 

A suitable definition for f(t) is still a matter for 
experimentation. 

Pattern Smoothing 

As has already been mentioned, when all dots have been 
placed for a bitmask pattern there is then performed a 
smoothing step. This is advantageous as although dots are 
placed so as to form good patterns, later placements can 
mitigate against earlier decisions. 

The smoothing step involves repeatedly examining the 
pattern for a dot that is inappropriately placed and moving it 
to a better position. The step completes when no suitable dot 
can be identified. 

To test a dot it is experimentally removed from the 
pattern and then placed back again according to the dot 
placement algorithm. If its position changes the delta in its 
weight value is stored, and the dot is replaced in its original 
position. When all dots have been thus tested a short-list is 
drawn up of those dots whose weight value delta is within a 
defined tolerance of the maximum delta. From this list, as 
with dot placement, the dot with the least corresponding 
noise value is chosen. 

As the patterns are held as bitmasks it is perfectly 
possible to move all the dots during the smoothing step. 
However, while this produces very pleasing stochastic 
patterns it introduces an unacceptable level of false 
contouring in images. Therefore, the smoothing step 
distinguishes between dots that have been placed for the 
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current bitmask pattern and those inherited from the previous 
bitmask. The former may be moved at any time, the latter 
only if the move offers a significant advantage. Rules for 
determining precisely when the advantage is sufficiently 
significant are still a matter of research. Interesting results 
have been achieved when allowing a small proportion of 
inherited dots to move and by allowing such moves only in 
the early stages of the smoothing step, but further work is 
required to quantify the cost of the additional contouring 
noise. 

Non-square Bitmasks 

In the algorithm overview it was indicated that the bitmask 
need not be square, but for simplicity this was ignored in the 
definition of the dot placement algorithm. The matter will 
now be dealt with. 

Given that one of the features of a stochastic screen is to 
appear aperiodic, there is no general advantage in supporting 
non-square bitmasks. However, many devices operate with 
non-square resolution aspect ratios. To create a physically 
square tile for such devices the bitmask of necessity must be 
non-square. To work well in this scenario the algorithm 
needs to accommodate the non-square nature of the pixels. 

In point of fact only minor extensions to the algorithm 
are required. If the dimensions of the bitmask are assumed to 
produce a square in the output image, it is simple to define a 
scaling to convert between pixel co-ordinates and isotropic 
co-ordinates at the lower resolution. This mapping is given 
by Eq. 4. 
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When calculating the weight value of a pixel (W(x,y)) 
the isotropic co-ordinate space is used for D and R. All other 
parts of the algorithm can work in pixel space. 

Second-Order Patterns 

Many classes of output device are not capable of reliably 
reproducing isolated, single pixel dots (for example, electro-
photographic printers). For such devices dispersed dot 
halftoning, such as stochastic screening, often yields 
disappointing results. While mid-tones are generally 
reproduced with acceptable quality the light and dark tone 
ends of the halftone range tend to under- and over-saturate, 
respectively. In extreme cases, more than half the dynamic 
range is lost. 

The proposed algorithm has been adapted to 
accommodate such devices and has produced promising 
results on laser printers. However, at time of writing the 
work is not ready for publication. It is hoped to include more 
details in the oral presentation. 

Likewise, many print devices are capable of more than 
bi-level output. Again, the proposed algorithm and resulting 
bitmasks have been applied to halftoning on such devices 
with very pleasing results. 

Figure 1. Original image Figure 2. Halftoned image using stochastic bitmask 
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Figure 3. Halftoned image using serpentine Floyd-Steinberg error 
diffusion 

Results 

Results may be seen in figures 1 to 4. Fig. 1 shows the 
original grayscale image. Fig. 2 gives the image when 
halftoned with a 256×256 bitmask. For comparison, figures 
3 and 4 show the same image when halftoned using 
serpentine Floyd-Steinburg error diffusion and Bayer’s 
algorithms, respectively. 

With the low-resolution image used it is possible to 
discern more noise in the bitmask output than that of the 
error diffusion. This is largely a consequence of the 
compromise of dot positioning in the bitmask so as to avoid 
false contours. Because of its algorithmic nature error 
diffusion is able to smoothly vary the dot frequency without 
such limitations. (See section 5 of Spaulding et al.9) In actual 
print scenarios this difference is much less observable. 

Comments on Performance 

As presented the bitmask generation algorithm is 
computationally expensive. In particular the smoothing step 
is extremely time-consuming for large bitmasks. As this is 
generation-time, not runtime, it may be argued that the time 
is irrelevant. However, in the real world development 
resources are often constrained so generation time can still 
have an impact on an algorithm’s utility. 

Fortunately it is not difficult to optimize the algorithm 
to greatly improve performance. Key to this is the creation of 
the Weight Map. This allows the weight value of each pixel 
to be stored rather than generated each time it is needed. As 
dots come and go from the pattern the Weight Map is 

updated, but as a pixel’s effect is restricted to its 
neighborhood, the cost of updating is far less than the cost of 
recalculation. (Indeed, there is an order of magnitude 
difference.) 

Further improvement can be made by pre-calculating all 
values for w within the neighborhood. 

The result of these (and other optimizations) is 
generation times for 256×256 bitmask sets in around 45 
minutes on an average-performance PC. 

Regarding runtime performance, it has been found that 
halftoning using bitmasks is approximately ten times faster 
than a commercially available error diffusion algorithm 
(which is more sophisticated and of higher quality than the 
Floyd-Steinburg algorithm) for bi-level output and about 
four times faster for multi-level output. These timings are 
also comparable with halftoning using threshold arrays. 

Conclusion 

A new method for generating stochastic screens has been 
presented. This method is particularly well-suited for 
halftoning using bitmasks. Its simple dot-placement 
algorithm has been shown to be effective in producing 
pleasing results. Its low run-time requirements make it a 
suitable choice for print scenarios where error diffusion is 
too expensive or where the slight quality advantage of error 
diffusion is not required. 

It is also noted that within the presented method there is 
much scope for enhancing the resulting pattern quality 
through experimentation. 

Figure 4. Halftoned image with Bayer pattern 
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