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Abstract

Color consistency is crucial for both photo and commercial
printing applications. Dot gain tables are currently updated
sporadically, and between updates colors can shift due to
process drift in the press. The goal of this investigation
is to dynamically control the dot gain table and developer
voltage to ensure more consistent color control while min-
imizing waste and calibration measurements.

In this article we approach the elements of this calibra-
tion process as a series of machine-learning problems and
investigate the efficacy of replacing physical calibration
measurements with model-based predictions. The current
state of the machine, expressed as sensor measurements,
are used to model both the developer voltage, and the sub-
sequent dot gain look up table. We also consider models
that make a prediction based on a restricted set of cali-
bration measurements, not necessarily including the full
machine state vector. Our initial investigation using a pre-
liminary dataset shows that machine learning methods are
suitable for predicting the dot gain table.

Introduction

Color consistency is crucial for both photo and commercial
printing applications. Look up tables (LUTs) for estimat-
ing dot gain values are currently updated on demand when
the operator notices color consistency problems, and be-
tween updates colors can shift due to process drift in the
press. The goal of the work presented in this article is to
dynamically control the dot gain table and developer volt-
age to ensure more consistent color control while minimiz-
ing waste and calibration measurements.

Currently the dot gain table and developer voltage are
controlled by printing special calibration test patterns on
demand which are measured internally by the press. The
calibration process begins by printing one or more test pat-
terns with 100% ink coverage to determine a developer
voltage setting for each ink such that the ink thickness at
100% coverage is within specification. Once the developer
voltage is set, the actual ink thickness or optical density at
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100% coverage is measured. Finally one or more sheets
of test patterns with monochromatic swatches of uniform
digital dot area are printed to measure the physical dot area
for each of the digital dot areas. These measurements are
the values required for the dot gain.

There are two distinct phases in this process which may
be formulated as machine learning problems: (1) predict
the developer voltage and corresponding ink optical den-
sity at 100% coverage per ink given the current machine
state, and (2) predict the dot gain table values for each dig-
ital dot area of interest for each ink given the current ma-
chine state, developer voltage, and ink optical density at
100% coverage. A related problem, predicting the dot gain
table given one or more measured dot values without any
state information, is also examined here. A large number
of machine learning regression algorithms are applicable
to these problems. We evaluate the accuracy of three com-
mon methods: artificial Neural Networks (NN), Support
Vector Machines (SVM), and linear regression. Neural
networks are a well-known technique for machine learn-
ing. Both Bishop [1] and Ripley [2] give an excellent and
readable treatment of theory and methods. Support vector
machines are a kernel-based approach to machine learn-
ing. A good tutorial introduction to SVM was written by
Burges [3].

If a method is found to supply sufficiently accurate pre-
dictions, we can replace or augment the calibration proce-
dure with a prediction-based process that has much less
impact on customer workflow and consumable usage. The
minimal requirements for the HP Indigo press are that the

absolute difference between the predicted dot area and printed

dot area is less than 2 at least 67% of the time.
The dot gain is defined as follows:

_ printeddot area

~ digital dot area 1)

dot gain

Both the digital dot area and printed dot area are ex-

pressed as a percentage of the area that is covered, where

100 means that the whole area is covered with ink. The

dot gain table contains the printed dot area value, used in
Equation 1, for each digital dot area of interest.
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The calibration process uses an inline optical densito-
meter to read the printed dot areas from a swatch of uni-
form density in a single color. The current physical con-
straints of the system allow up to fifteen such swatches on
a single sheet. Since the presses can have up to seven sep-
arations (inks), this implies that we may measure up to two
digital dot areas for each separation in a single sheet.

The densitometer used for LUT calibration approxi-
mates the true dot area with a small measurement error.
The practical accuracy of any model-based predictions is
limited by the accuracy of the densitometer. In some cases,
the models suggested here approach this accuracy limit.

As an alternative to the full calibration process, we
consider a “fast calibration” process that measures one,
two or more points per color separation, and then uses the
measured information and the machine state to predict the
rest of the dot gain lookup table values.

We analyzed a dataset of dot gain LUT’s collected by
HP Indigo. Our results for this dataset are promising in
that the models give predictions within the required limits.
It is important, however, to keep in mind that this dataset is
small by machine learning standards - approximately 130
samples for each ink separation and halftone screen.

HP Indigo dataset

The various parameters registered in the HP Indigo dataset
are best understood by a brief introduction to the printing
process of the HP Indigo Press.

The printing process

The process of image production consists of three stages
(see Figure 1). The first step is image generation in which
a latent image is created on the Photo Imaging Plate (PIP)
foil. The second step is image development. During this
stage the latent image is developed by ink on the PIP. The
last step is image transfer in which the developed image is
transferred from the PIP to the Blanket that wraps the In-
termediate drum (ITM). At this stage, the developed image
is transferred from the Blanket to the substrate.

This process of converting a digital signal to a physi-
cal dot on a piece of paper can be affected by any number
of system elements and interactions. Many key elements,
such as the PIP foil and blanket are regularly replaced and
each replacement part has its own characteristics. Thus, it
is likely that a full dot gain table measurement will need
to be taken after each major part replacement. In addition,
during normal operation other parameters, such as temper-
ature, vary continuously.
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Figure 1: Indigo Press.

Dataset information

The HP Indigo dataset includes parameters and dot gain
LUTs collected over a one week period from a single Se-
ries I Indigo Press by a single operator using the automatic
calibration process. Note that Figure 1 actually refers to
the more sophisticated Series 2 Press, however the essen-
tial printing process remains largely the same between the
two models.

The dataset contains 269 dot gain tables each contain-
ing fifteen printed dot area values for each of the four sepa-
rations Black, Cyan, Magenta and Yellow. Associated with
each set of printed dot area values (the dot gain LUT) are
a set of observed parameters, twelve of which are com-
mon across all separations, such as the ITM temperature,
and seven others which vary according to the current sep-
aration, e.g., ink characteristics and the developer voltage.
For a more detailed description of the dataset refer to [4].

Due to space constraints in this document, all the graphs
shown are for the 175Ipi HDI-175 screen.

Dot gain prediction results

There are a variety of subproblems under the general prob-
lem of dot gain LUT prediction, which are appropriate for
different usage models. The subproblems we consider here
fall into four general categories: (1) dot gain LUT predic-
tions using only machine state measurements (i.e. no con-
sumables are required); (2) parameter ranking / relevance
for problem (1) models; (3) dot gain LUT predictions us-
ing the measurement of one or more dot gain values (i.e.,
without measuring any machine state variables).
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Figure 2: Prediction Error 67% Confidence Interval.

For the prediction problems, the prediction errors are
the difference between the true printed dot area and the
predicted print dot area. The prediction errors were ana-
lyzed using a Chi-squared goodness of fit test and found
that they are approximately normally distributed. There-
fore, we can use the normal distribution multipliers for
computing confidence intervals. The results are presented
on graphs with the x-axis giving digital dot area, and the
y-axis the difference of means. For a given model, a con-
fidence “envelope” is plotted on this axis. That is, points
corresponding to the upper limits of the confidence inter-
vals for each digital dot area are joined to form a line, and
the lower limits form a second line. This is simply for read-
ability, since we often wish to compare multiple models on
a single graph axis.

The graphs in Figure 2 show the 67% prediction error
confidence intervals for each of the three machine learning
methods: linear regression, neural networks, and support
vector machines as a function of the digital dot area. Note
that each separation behaves slightly differently. The null
model prediction for each separation is also included for
comparison.

From the results in Figure 2, it is apparent that the
behavior of all the machine learning methods is similar.
This means that the prediction of “hard” points is invariant
of the learning method. Since linear regression performs
comparably to the more complex non-linear methods, all
further analysis was done using linear regression. Note
that the null model does not supply acceptable predictions.

Parameter ranking & selection

Some of the parameters used in the dot gain prediction
models may be redundant. That is, we may find smaller
models that fit the data equally well by removing some pa-
rameters. This has a two fold advantage - smaller models
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are more efficient computationally, and they are less prone
to overfitting. Furthermore, by analyzing the input param-
eters, we can gain some insight into the machine operation
that may help the manufacturer identify other issues with
parameter control etc.

The importance of a parameter may be measured by
the effect of removing that parameter from the model. If
the predictive power of the model is unaffected (or even
improved) we may conclude that the parameter is not sig-
nificant. On the other hand, if the model has a significant
degradation in performance without a particular parame-
ter, we may conclude that this parameter is significant and
should be retained.

To implement this method we proceeded in the follow-
ing manner. First model predictions were obtained for the
entire dataset using the whole set of predictors. The pre-
dictions were obtained using the 10-fold cross validation
technique.

The sum of squared errors (SSE) of these predictions
was computed on each of the digital dot values of the LUTs,
where both screens and all separations were included in
this sum. Then similar predictions and SSE computations
were made for models fitted excluding each of the input
parameters in order.

We repeated this experiment 20 times and from this we
were able to estimate the mean and standard deviation of
the SSE value for each of the table entries. Using these
estimates we can generate confidence intervals for the dif-
ferences of means between the original (full) model and
each of the depleted models, for each DDA value.

Figure 3 summarizes these results. The error bars give
the 95% confidence interval for the mean of the relevant
depleted model SSE minus the mean of the full model SSE.
If the confidence interval does not include the zero line in
a particular case, then we can conclude (at the 0.05 level)
that the parameter under consideration is relevant for the
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Figure 3: Difference of means 95% confidence intervals for depleted versus full linear regression models.

dot gain LUT prediction. From the graphs in Figure 3,
we can determine which parameters are significant to the
prediction and which parameters are not significant. Note
also that the significant parameters are effective at different
DDA values. For example, the blanket.counter variable is
effective mostly at the lower DDA values, while vdevel-
oper has the biggest effect at the high range of DDA val-
ues. We can also use this technique to obtain a ranking of
the importance of each input parameter (see [4]).

Prediction with one or more measured points

The results in the previous section suggest that we can pre-
dict the dot gain LUT to within specification requirements
by measuring the machine state. An alternative to elimi-
nating the calibration process is reducing the waste due to
calibration with a “fast calibration” where some digital dot
area patches are printed and the printed dot area measured.
In this section we quantify the prediction quality when us-
ing both one and two measured points.

This prediction problem immediately raises the issue
of which points to add. From prior figures, such as Figure 2
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we can see that the error distribution tends to be bi-modal,
with the smaller points, e.g., 2-16 covering one regime, and
the middle points, e.g., 27-50 covering another regime.

Figure 4 shows the results of fitting models using a sin-
gle measured LUT value, and predicting the remainder of
the LUT based on this single value. For this case we used
neural network models rather than linear regression mod-
els to add some non-linearity to the predictions. The mea-
sured points in Figure 4 are those that gave the best pre-
diction results. These results suggest that such models can
meet the accuracy requirement almost all the time.

Figure 5 shows the results of fitting models from two
measured LUT values. Two sets of points are shown {27 &
50}, which gave the best single point prediction, and {16
& 40} which appear to give the best two point prediction.
As expected, two point prediction gives better prediction
results than one point and compares well to the prediction
results using the machine state.
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Figure 4: Prediction Error Confidence Intervals for Neural Network Predictions using One Measured Point and No Machine State.
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Figure 5: Prediction Error Confidence Intervals for Neural Network Predictions using Two Measured Point and No Machine State.

Conclusions

From the initial dataset it appears that given the measur-
able parameters from Table 1 we can predict the various
dot gain values with acceptable accuracy using linear re-
gression. This should allow HP Indigo to greatly improve
the color consistency for their presses, while reducing both
the consumable waste and work-flow disruption.

We suggested a method for assessing parameter impor-
tance. With this method we were able to conclude the some
parameters do not significantly affect the model perfor-
mance, and may, therefore, be eliminated. We also ranked
the importance of the input parameters with respect to their
effect on dot gain.

The results from predictions based only on one or two
measured points, suggest that there may also be opportu-
nity to reduce consumable usage in some circumstances by
printing a reduced LUT set (“fast calibration™ ), or relying
on existing values. It does appear that there is a strong

enough relationship between point in a dot gain LUT to be
exploited by these simpler models.
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