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Abstract

In xerographic printing, stabilization of the color reproduc-
tion function (CRC) or the tone reproduction curve (TRC)
for the color separations are critical for achieving color
consistency. This problem is challenging because: 1) there
exist only a small number of actuators to stabilize a po-
tentially infinite dimensional TRC; 2) only a small number
of tone / color test patches can be printed and measured at
a time. The first issue is addressed by a curve-fitting TRC
stabilization controller based on Linear Quadratic (LQ) con-
trol with integral dynamics is proposed. It specifies partic-
ular tones or color that to be precisely controlled, while
allowing other tones or colors to be close to the desired
value. To address the second problem, time-sequential
sampling is proposed to enable the time varying TRC or
CRC to be reconstructed based on small number of sam-
ples. Experimental and simulation results verify the ade-
quacy of the approach.

Introduction

A Xerographic color printer can be represented by the color
reproduction function; CRC : C → C, C is a 3-dimensional
color space, that maps the desired color into the output
color. This map is the identity for an ideal printer that pro-
duces consistent color. The printing of each of the CYMK
color separation is characterized by the tone reproduction
curve for that color TRC : [0, 1] → C, mapping the de-
sired tone (∈ [0, 1]) to the printed color. The 3-dimensional
color representation for the output-color can be reparame-
terized into a 1-dimensional representation based on the
procedure described in [1] resulting in a representation of
the TRC : [0, 1] → <, mapping the input tone to the output
tone.

In this paper, we consider the problem of stabilizing
TRCs for individual color separations using time sequen-
tial sampling. The proposed approach can be extended
to the stabilization of the CRC as well. CRC and TRC
stabilizations are concerned with maintaining constant the
CRC and TRC mappings, i.e. the input color or tone con-
sistently produce the same output in the presence of dis-

turbances such as humidity, temperature, and material age.
This makes use of xerographic actuators such as laser power,
charge and development voltages etc. Once this is achieved,
the CRC and the TRC can be inverted via pre-filtering to
achieve the ideal identity map.

Challenges in the CRC or TRC stabilization are largely
to related to the limited number of actuators and limited
sensing capabilities in the face of TRC and CRC being
high dimensional objects. The dimensionality M of the
TRC is determined by the level of tone discretization; and
the dimensionality of the CRC is of the order of M = c3

r

where cr is the discretization of each color coordinate (e.g.
M = 163 = 4096 for cr = 16). In contrast, the num-
ber of xerographic actuators is of the order of m ≈ 3 per
color separation. Sensing of the TRC and CRC is currently
achieved by printing and measuring small patches (n = 3
to 5 per belt cycle) of uniform tone or color. Increasing the
number of test patches increases hardware needs as well as
consumables (toner) and productivity.

The limited actuator issue is addressed by a curve-fitting
approach based on linear quadratic control with integrator
dynamics. This approach allows the designer to specify q
particular tones or colors (q < m) which will be precisely
regulated while allowing the TRC or CRC to stay close to
the desired values at the other tones or colors.

The limited sensing issue is addressed by time-sequential
sampling to increase the utility of available feedback infor-
mation [6]. In this approach, test patches of different tones
or colors are printed at different times. Previous sensing
schemes use test patches that are fixed. Time-sequential
sampling was investigated in the 1980’s and 1990’s for
video and time varying imaging applications [3][4][5]. The
derivation and analysis of time-sequential sampling and re-
construction of the TRC is given in [6]. This paper present
results in which the TRC stabilization controller is com-
bined with time-sequential sampling.

Problem Formulation

The time-varying TRC(k) : [0,1] → < gives the input
tone to output tone of the xerographic printing process.
The TRC is a mapping, it is potentially infinite dimen-
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sional. In this paper, we assume that the TRC can be
adequately described by its values at M points, i.e.

TRC(k) =




TRC(k)[tone1]
...

TRC(k)[toneM ]


 ∈ <M ,

where M can be fairly large. As noted in [2], the possibly
nonlinear TRC can be represented by the static, linear time
varying, uncertain model as follows:

TRC(k) = φ̂(I + ∆(k)Wu)ū(k) + TRC∗ + d̄(k) (1)

where u(k) ∈ <m are the xerographic actuators, d(k) ∈
<M are the disturbances, and TRC∗ ∈ <M is the nomi-
nal TRC and d̄(k) ∈ <M is a slowly time varying distur-
bance. Also, ū(k) := u(k) − uo, where uo is the nomi-
nal control input. φ̂ ∈ <M×m is the nominal sensitivity
function, ∆(k) ∈ <m×m is the multiplicative uncertainty,
Wu ∈ <m×m is the matrix of given uncertainty weights.
In this paper, we will assume that there is no uncertainty in
the model (i.e. ∆(k) = 0 in (1)).

Sensing of the TRC(k) at time instant k is achieved
by printing and measuring n << M tones in the form of
small test patches. Typically, the same set of n tones is
printed at each k and n will be determined by the number
of available sensors, as well as the productivity and mate-
rials cost of printing the test patches.

In [6] and here, we propose to print n different tones
at different time k according to the M− periodic time-
sequential (TS) sampling pattern: given by α(k) = α(k +
M) = [α1(k), α2(k), . . . , αn(k)] so that at time k, tones
determined by αi(k), i = 1, . . . , n are printed and mea-
sured. In this paper, we focus on n = 1. This allows each
of the M -tones to be sampled at some time. The sam-
pling sequence α(k) defines an indicator matrix sequence
Cα(k) ∈ <n×M such that on (i, j) element of Cα(k) is a
1 when j = αi(k) and it is there 0 otherwise.

The time sequentially (TS) sampled TRC is therefore
given by:

TRCs(k) = Cα(k)TRC(k) ∈ <n=1. (2)

Two sequences that will be pursued in this paper are (Fig-
ure 1): lexicographic sequence, α(k) = mod(k, M), and
the bit-reversed sequence where α(k) is given by revers-
ing the order of the significants bits for the binary repre-
sentation of the index-k. The idea behind the bit-reversed
sequence is that it is roughly a uniform sampling of the
time-tone space (see Figure 1).

The general control objective is to control the TRC so
that it matches the desired nominal TRC at each tonei,
i = 1, 2, ..., M , as k →∞:

TRC(k)[tonei] → TRC∗(k)[tonei] (3)
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Figure 1: Lexicographical and bit-reversed time sequential sam-
pling sequence with M = 21 tones.

where TRC∗(k) is the desired TRC. Since there are fewer
actuators m than the number of tones M to be controlled, it
is typically not possible for Eq.(3) to hold for all M tones
in the presence of disturbance d̄(t). One possibility is to
require that Eq.(3) is satisfied only at m instead of all M
tones. Theoretically, this can be achieved using integral
control for constant or slowly varying disturbances. How-
ever, as shown in [2], the integral control approach may
lead to mis-behavior at the unspecified tones and poses ro-
bustness problem in the presence of model uncertainty. In-
stead, a curve-fitting approach is proposed in [2] to min-
imize the 2-norm error of the TRC over the entire tone
range. In this paper, the curve fitting approach also allows
q < m tones to be precisely controlled.

Reconstruction of TS sampled TRC by Kalman Filter
[6]

Let ∆TRC(k) := TRC(k) − TRC∗ be the TRC error.
Neglecting model uncertainty (∆(k) = 0), the xerographic
plant given in (1) becomes:

∆TRC(k) = φ̂ū(k) + d̄(k). (4)

To exhibit its tonal spectral contents, the TRC disturbances
is modeled by its DFT so that:

d̄(k) = G · xd(k) (5)

where k ∈ Z+ is the index, G ∈ <M×M is a matrix of
Fourier basis function and xd(k) ∈ <M is the vector of
Fourier coefficients representing the tonal frequency con-
tent of the disturbance. Substituting (5) into (4), we have:

∆TRC(k) = φ̂ū(k) + G · xd(k)
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The disturbance dynamics, xd(k) is modeled as pink noise
having a compact tonal-temporal spectral support as gen-
erated by the following dynamics:

xw(k + 1) = Awxw(k) + Bww(k) (6)

xd(k) = Cwxw(k) + Dww(k)

where w(k) is a white process noise. The matrix Aw, Bw, Cw

and Dw are obtained from a bank of low-pass butterworth
filters that filter each spatial channel(each Fourier coeffi-
cients) with temporal cutoff frequencies corresponding to
an ellipse. This gives an approximation of a compact ellip-
soidal tonal-temporal spectral support. From the definition
given in (2), the time-sequentially sampled signal subject
to measurement noise n(k) is given by:

∆TRCs(k)− Cα(k)φ̂ū(k) = Cα(k)GCwxw(k)+
CαGDww(k) + n(k)

(7)

where both w(k) and n(k) is zero-mean white noise se-
quences with covariance Rww and Rnn respectively.

By treating the LHS of (7) at the measurement, the M -
periodic linear system given by (5), (6) and (7) admits a
M -periodic Kalman filter for estimating the disturbance
d̄(k):

x̂w(k + 1) =Ac(k)x̂w(k) + Bc(k)∆TRC(k)−
Bc(k)φ̂ū(k)

d̂(k) =G̃ · x̂w(k) (8)

̂∆TRC(k) =d̂(k) + φ̂ū(k) (9)

where

Ac(k) = Aw(I − L(k)Cα(k)G̃)
Bc(k) = AwL(k)Cα(k)

G̃ = GCw

and L(k) is the periodic Kalman filter gain obtained by
solving the periodic Riccati equation:

P̄ (k + 1) =Aw[P̄ (k)− L(k)Cα(k)G̃P̄ (k)]AT
w+

BwRwwBT
w

L(k) = P̄ (k)G̃T CT
α (k)

[
Rnn + Cα(k)G̃P̄ (k)G̃T CT

α (k)
]−1

P̄ (k) = P̄ (k + M) (10)

For further analysis and derivation of time-sequential sam-
pling with reconstruction using Kalman filter, the readers
are referred to [6].

TRC Stabilization Controller

The high dimensionality of the TRC coupled with limited
actuation does not permit us to keep track of all the color

tones. Moreover, we have to consider uniformly sampling
of only a finite M -tones. We consider an optimal con-
trol approach to ensure each of these M -tones achieve the
nominal TRC in a least-squared sense. We also impose an
integrator dynamics on the optimal control formulation to
ensure certain q-tones (q ≤ m) achieve (3). This feature
would be extremely useful when it is desirable to have cer-
tain q-tones to coverage exactly to the desired tones. This
however will come at the expense of reducing the free-
dom to curve fit the TRC onto the desired TRC. Hence the
optimal control problem is to find the control u(k) based
on the measured TRC, TRC(k), such that the following
quadratic performance index(QPI), J is minimized:

J =
1
2

∑

k∈Z
∆TRCT

i (k)Qi∆TRCi(k)+

1
2

∑

k∈Z
∆TRCT (k)Q∆TRC(k)

where the integrator dynamics are given by

∆TRCi(k + 1) = ∆TRCi(k) + Ci∆TRC(k) (11)

where Ci ∈ <q×M is the indicator matrix for the selected
q-tones to fulfill (3). Qi ∈ <q×q and Q ∈ <M×M are the
weighting matrices. The linear-quadratic state feedback
follower-controller for the given QPI for system (4) can be
solved by using the backward-sweep solution [7]. Assum-
ing the disturbance d̄(k) is available, the optimal control is
given by:

ū(k) = −K1∆TRCi(k) + K2d̄(k) (12)

where

K1 =Z−1
wwZT

xw

K2 =− Z−1
ww(φ̂T CT

i SBCi + φ̂T Q− φ̂T CT
i FB)

are the feedback and feedforward gains respectively, with
Zww := Ru + φ̂T CT

i SBCiφ̂; Zxw := SBCiφ̂;
Ru = φ̂T Qφ̂. SB is obtained from the solution of the
discrete algebraic Riccatti equation.

IT SBI − SB − SBCiφ̂·
(Ru + φ̂T CT

i SBCiφ)−1(SBCiφ̂)T + Qi = 0

and,

FB =(ZxwZ−1
wwφ̂T CT

i )−1·
(ZxwZ−1

ww(φ̂T CT
i SBCi + φ̂T Q)− SBCi)

To implement Eq.(12), the Kalman filter estimate of
the TRC disturbance based on time-sequential sampling,
d̂(k) in Eq.(9), is used in lieu of the actual disturbance

IS&T's NIP20: 2004 International Conference on Digital Printing Technologies

206



 

 

 

Figure 2: Kalman estimator of time-sequentially sampled TRC and 
TRC stabilization controller mechanization 

 
 
 
 
 

( ).kd ∆TRCi(k) is obtained from Eq. 11 where the Kalman 
estimate of the TRC error based on time-sequential 
sampling,  in (9), is used in lieu of the actual TRC 
error, ∆TRC(k). 

Figure 2 shows the schematic of the TRC stabilization 
controller with time sequential sampling. The well known 
separation principle [8] allows the controller and estimator to 
be designed separately yet used together. 

A robust static controller was previously proposed in [2] 
which also uses the curve-fitting approach (i.e. it tries to 
minimize the overall TRC error). A major issue addressed in 
[2] is that fixed TRC sampling is assumed, and the number 
of tones n that are measured is small compared to the 
dimensionality of the TRC (M). The proposed control 
ensures that the TRC behaves adequately even at 
unmeasured tones in the presence of uncertainty. With the 
use of time-sequential sampling, the apparent number of 
measured tones can be significantly increased, thus relaxing 
this difficulty. Nevertheless, the time-sequential sampling 
can be used with the robust static control law in [2] to take 
advantage of its robustness feature. 

Simulation and Experiments 

Simulation 
The behavior of the xerographic plant is simulated by 

taking the model of the form of (1) based on TRC 
experimental data from a commercial printer using different 
xerographic inputs. The nominal sensitivity matrix φ̂  in (1) 
is obtained by least-square fitting of the experimental data 
into the linear model. The behavior of the system without 
plant perturbation is considered i.e. ∆(k) = 0. The 
disturbance ( )kd  dynamics is simulated from the pink noise 
model given in (6) with the temporal cutoff frequency, f of 
the butterworth filter at each spatial channel, u given by an 
ellipse:  

 

 
(u/U)2 + (f/W)2 = 1 

 
where U and W gives the highest tonal and temporal 
frequencies in ( ).kd  In our study, we used a sampling 
interval of T = 0:4s and the tonal range is tonei ∈ [0,1]. With 
M = 21, this gives a tonal temporal Nyquist frequencies of 
(uN, fN) = (10.5cycles/tone, 0.06Hz). 

We consider two cases of sampling: full sampling where 
all M-measurement points are used at each sampling instant, 
k and time sequential sampling where only one tone is 
sampled at each sampling instant according to a prescribed 
sampling pattern i.e. lexicographical or bit-reversed 
sampling sequences. As our primary interest is to analyze the 
effect of disturbances with different sampling schemes, we 
assume the measurement noise n(k) = 0. 

The controller that minimizes (11) with one (q = 1) 
integral fix points at tone2 is obtained from (12). The 
performance weighting matrices Qi and Q in (11) are 
identities.  

The root mean square of the TRC errors, 
 

 

 
for all M-points is taken as the measure of performance of 
the TRC stabilization controller. Simulations were carried 
out at different tonal-temporal support frequencies (U;W) for 

( )kd  within the range of {(U,W)|1 ≤ U ≤ uN, 0:01 ≤ W ≤ 6fN} 
using the optimal TRC stabilization controller. The 
comparable RMS of time-sequential sampling (lexico-
graphical sampling sequence) and full sampling as shown in 
Figure 3 means that we are able to achieve good TRC 
stabilization by just sampling one TRC tone at each time 
step. Figure 3 also shows the expected response in increasing 
the tonal-temporal support frequencies of the disturbance 
signal – the higher the tonal-temporal support frequencies, 
the higher the RMS of TRC error. The higher tonal-temporal 
disturbance frequencies the harder it is for the TRC 
controller to curve-fit the measured TRC to the desired TRC. 
Figure 4 compares the difference in RMS TRC error 
between lexicographical and bit-reversed sampling 
sequences. This shows the clear advantage of using the bit-
reversed time-sequential sampling sequence over the 
lexicographic sequence. The better signal reconstruction of 
the bit-reversed sampling sequence as reported in [6] 
translates to better TRC stabilization control performance. 
Hence the bit-reversed sampling sequence is preferred for 
our application where sensing is expected to be highly 
sparse. 

Experiment 

The proposed TRC stabilization system was also experi- 
mentally tested on a Xerox Phaser 7700 xerographic printer.
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Figure 3: RMS of TRC error using full and lexicographic time-sequential sampling at different tonal-temporal frequencies support
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Figure 4: Difference in RMS of TRC error (RMSLexico −
RMSBit-reverse) of lexicographical and bit-reversed time sequen-
tial sampling for different tonal-temporal support frequencies
(U, W ).

Currently we do not have direct access to the xerographic
actuators. To evaluate the TRC stabilization controller with
full and time sequential sampling, a virtual printer model is
used to generate the response (color image) due to changes
in the actuator inputs. The virtual printer model is the one
used in the simulation study above. The output response
from the virtual printer is then printed using the physical
printer. By calibrating the printer such that it is an identity
map at the nominal condition, we can capture the effect of
the actual disturbances on the performance of the TRC sta-
bilization system. The output response is in the form of a
single colorant wedge of 21 different tones i.e. M = 21.

The disturbances was artificially induced by introducing a
transparency in the optical path of the laser. Sensing of the
color wedge is performed using a scanner that has been
calibrated using a spectrophotometer.

Figure 5, 6 and 7 show the effectiveness of the pro-
posed TRC stabilization system using both full and time
sequential sampling. The TRC stabilization using all the
sampling approaches result in the convergence of the TRC
to the nominal TRC with each time step. Considering that
only one tone is sampled at each time step, the time se-
quential sampling perform well compared to that achieved
using full sampling(M = 21).
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Figure 5: Response of TRC stabilization control subjected to in-
duced disturbance with full sampling. The curve marked with *
is the desired TRC
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duced disturbance with time sequential sampling (Lexicographi-
cal sequence). The curve marked with * is the desired TRC
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Figure 7: Response of TRC stabilization control subjected to in-
duced disturbance with time sequential sampling (Bit-reversed
sequence). The curve marked with * is the desired TRC

Conclusion

This paper addressed two main problems in realizing a
practical TRC stabilization controller in maintaining con-
sistency in color reproduction. The first problem of under
actuation is resolved using a curve-fitting optimal control
approach. The proposed TRC stabilizing control makes
use of all available measurement/reconstruction data and
allows certain tones to be regulated to converge to the cor-
responding desired tones. The second problem relating to
limited sensing capability is resolved using time sequential
sampling. Both simulation and experimental results shows
the effectiveness of the proposed approach. In particular
we demonstrated the comparable stabilization property in
using time sequential sampling in place of full sampling.
The bit-reversed sequence is also found to yield better sig-
nal reconstruction as has been reported in [6]. This result
translates to better TRC stabilization control performance
as reported here. Time sequential sampling substantially

lower the TRC sensing requirements and this is important
in actual implementation where available print area should
be devoted to customer images and not in printing sensor
patches.

The next step would be to expand the idea to cover
stabilization of not only one single color separation as ad-
dressed here, but to all different color combinations. The
same basic idea as proposed here should apply.
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