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Abstract

This paper proposed and compared different methods of
representing the color tone reproduction curve (TRC) for
stabilization of the monochorome xerographic printing pro-
cess. TRC stabilization is vital in maintaining high consis-
tency in color printout. Colors are typically represented
by a 3-dimensional representation such as the CIELAB
or CIEXYZ colorspaces. For stabilization control, the 3-
dimensional representation is redundant due to the fact that
limited actuators authority would not account for all the
degree of freedom in the data representation. A 1- di-
mensional reparameterization of the 3-dimensional repre-
sentation is better suited for the stabilizing control. The
proposed parameterization methods involved projection of
the 3- dimensional representation onto a parameterization
curve. An empirical-based and model-based approach was
used to describe this curve. Simulation and experimental
results are presented to demonstrate the performance of the
different parameterization method subject to measurement
noise.

Introduction

In color printing, color reproduction with high consistency
and fidelity is very important. Unlike typical black and
white printers, image defects in color image composition
is highly noticeable. In term of the color reproduction, the
xerographic color printer is well represented by the color
reproduction function, CRC :C → C, desired-color 7→
output-color, where C is a 3-dimensional color space. It
is desirable to have CRC to be an identity map.

The printing process of a particular color separation is
characterized by the tone reproduction curve, TRC:[0,1] →
C, desired tone 7→ output-color, where a solid colorant is
represented by 1, and 0 represent the background with-
out any colorant. Current concepts of sensing the xero-
graphic process generally involve printing a small number
of small patches of single primary color tone images which
are subsequently read. The reading can be performed us-
ing a toner area coverage sensor (TAC) which monitor the
development of the color tones on the organic photocon-

ductor belt. With the advances of spectrophotometers and
calorimeters, we expect that these patches can be simi-
larly read to give the 3-dimensional color measurement
data. Such sensing concept allows sensing of the entire
color gamut and this represents a critical step in achieving
color printout with high fidelity. Our work on TRC stabi-
lizing control center around this sensing concept where the
output-color, C is given by a 3-dimensional representation.

In this paper, we proposed and compared different meth-
ods of parameterizing the 3-dimensional representation to
a 1-dimensional representation such that the TRC:[0, 1] →
<, maps the input-tone to the output-tone. The 3- dimen-
sional representation can be reparameterized to a 1- dimen-
sional representation because the primary color curve is in-
variant to changes in the xerographic printing process due
to disturbances or actuator inputs. Therefore all the pri-
mary color tones are well defined by a single color curve
in the 3-dimensional color gamut. This fundamental prop-
erty is the key in reducing the dimensionality of the 3- di-
mensional representation because it allows a fix parameter-
ization curve to be defined as a measure of the 3- dimen-
sional representation. In this paper, we evaluate the effec-
tiveness of the different parameterization methods subject
to measurement noise. The most effective parameteriza-
tion method would be the one that is least sensitive to the
measurement noise.

The resulting TRC representation can then be effec-
tively stabilized using the TRC stabilization controller as
proposed in [1][2].

Colorspace Parameterization

Lets define a space, X with a color difference function
dX(C1, C2) = ∆EC ∈ <, where C1, C2 ∈ X . The
colorspace reparameterization gives a 1-dimensional rep-
resentation defined on a space, Y . Then the colorspace
parameterization function, π : X → Y assign each 3-
dimensional colorspace measurement C ∈ X an element
π(C) = κ ∈ Y . κ denotes the 1-dimensional parameteri-
zation. π can be any function that maps X into Y, πX =
{π(C)|C ∈ X} ⊂ Y ( injective or 1-1 mapping ). Figure
1 shows the mapping of different parameterization func-
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tions. 
 

 

Figure 1: Parameterization map 

 
 

Assume that the 3-dimensional color measurement is 
subject to measurement noise, ε ∈ X. Then π : X → Y assign 
each (C + ε) ∈ X an element π(C + ε) = κε ∈ Y . We propose 
that the best parameterization function π yields 
min|dX(π−1(κ);π−1(κε))|, where π−1 : πX → X. Essentially the 
most effective parameterization method is least sensitive to 
measurement noise. 

The map, π can be viewed as the projection of the 
measured 3-dimensional values onto a parameterization 
curve in the the 3-dimensional colorspace. The effectiveness 
of the parameterization is influenced by the parameterization 
curve itself and the distribution of the measurement noise. 
Different parameterization method can be obtained through 
different definition of the parameterization curve. We select 
the space (X, dX) of CIELAB in our work because of its 
perceptually uniform property. 

In this paper, we will investigate both empirical and 
physical model based parameterization methods for a single 
primary color. 

Empirical Based Parameterization 
The empirical based approach takes into account the 

availability of experimental data sets that can be used to 
characterize the parameterization curve. By considering a 
single primary color, a color wedge of different tones is 
printed and measured to obtained the set of experiment data 
in CIELAB colorspace. We denoted them by: 
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The parameterization curve is in the form of a line 

where the concentration of the experimental data, labĈ  is 
most significant (see Figure 2). An effective procedure for 
performing this operation is principal component analysis. 

Let v ∈ ℜ 3×1 be the eigenvector associated with the 
largest eigenvalue from the eigenvalues and eigenvectors 
 
 

 

Figure 2: Parameterization by projection onto the principal 
component  

 
 
 
of the covariance matrix. The covariance matrix, S is defined 
by: 
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ĈĈES µµ  

 
where µ labĈ  = E{ labĈ }∈ ℜ 3×1 is the mean of the 
experimental data. The components of S, denoted by sij, 
represent the covariances between the random variable 
components labĈ [tonei] and labĈ [tonej]. The component sii 
is the variance of the component labĈ [tonei] and indicates 
the spread of the component values around its mean value. 
Hence by definition, v gives the direction of largest variance 
of the data – it gives the vector direction of the principal 
component where the experimental data set has the most 
significant amounts of energy. 

Lets further define a nominal, TRC* : [0,1] → .C*
lab  The 

nominal color representation corresponding to tone = 0 is 
*
labC [0] ∈ ℜ 3×1 and at tone = 1 is *

labC [1] ∈ ℜ 3×1. Figure 2 
shows the principal component and the associated 
parameters in the CIELAB colorspace for the primary color 
separation of cyan. This parameterization function, π1 : X → 
Y is obtained by projection of the 3-dimensional 
measurement vector, Clab ∈ X in the CIELAB colorspace 
onto the principal component. By normalizing this projection 
such that the range of κ ∈ [0,1], we have: 
 

    (1) 
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where <⋅> gives the inner product of two vectors. 

Physical Model Based Parameterization 
For a CMYK color printer, with 4 number of colorants 

(ncolor = 4) there will be m = 2ncolor = 16 primaries that will be 
produced through subtractive overlapping of 1, 2, 3 or 4 
colorants (dot-on-dot or probabilistic mixing equations or 
hybrid mixing equation). These colors are called the 
Neugenbauer primaries and their reflectance are given by 
ri(λ)∈ ℜ N×1; i = 1, 2, . . . , 16. The spectral Neugenbauer 
model expressed the halftone print as weighted, wi average 
of these 16 overlapping combinations. Taking into account 
the penetration and scattering effects on the substrate called 
the Yule-Nielsen effect [3], the Yule-Nielsen Spectral 
Neugenbauer (YNSN) model is given by: 
 

   (2) 

 
where rp(λ, w) is the predicted reflectance and n is the Yule-
Nielsen correction factor. wi is known as the fractional area 
covered by the colorants and  =

m
i iw1 = 1 holds (see Figure 

3). 
 
 

 

Figure 3: Schematic of Yule-Nielsen Spectral Neugenbauer Model 

 
 

For a single colorant, ncolor = 1, m = 2. By employing a 
probabilistic mixing model (Demichel equation), we have: 
 

w1 = κ 
w2 = 1 − κ 

 
where w1,w2 give the fractional area of the solid colorant and 
the background respectively. κ is the dot-area of the colorant 
and represents the required 1-dimensional parameterization 
of the 3-dimensional primary color representation. The 
following derivation gives this relationship. 

From (2) we have: 
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where r1(λ) denotes the reflectance of the solid colorant 
(tone = 1) and r2(λ) is the background reflectance (tone = 0). 
The formulation relating the reflectance, rp(λ) to the 3-
dimensional CIELAB values is given by [3]: 
 
 

   (4) 
 
 
where Xn,Yn,Zn are the tristimuli of the white stimulus and, 
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iiλ  are uniformly spaced wavelength with interval of ∆λ 

covering the visible region of the spectrum. Sλ is the power 
spectral density of the illuminant used and { }λλλ z,y,x  is the 
relative spectral sensitivity of a standard observer. We will 
be using CIE illuminant D50 and the 2° 1964 CIE standard 
observer. 

Equation (4) gives an inverse parameterization function, 
1

2
−π : π2X→X that assign each 1-dimensional representation, 

κ ∈ π2X an element 1
2
−π (κ) = labC

~
 ∈ X. Related parameters 

{r1(λ), r2(λ),n} in (3) can be estimated using least-square 
(LS), total least-square (TLS) [4] or robust estimation 
algorithm (REA) [5] method to color printer calibration. 
These parameters define the parameterization curve. The 
total least-square (TLS) approach will be used in this paper. 

To obtain the parameterization of a particular CIELAB 
color measurements, Clab ∈ X, that is to find the 
parameterization map, π2 : X → Y the nonlinear least square 
minimization method is employed. We seek to minimize: 
 

( ){ }ℜ∈κκ :rmin  

 
where r(κ) := ½||Clab – labC

~
(κ)|| 2

2 . This problem can be 
solved using the nonlinear minimization function from the 
Matlab Optimization Toolbox [6]. 

Simulation and Experimental Results 

We considered the performance of the parameterization 
subject to the following measurement noise characteristics: 
 

( )kn∆= δε      (5)
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where ∆n(k) ∈ <3×1 is randomly chosen with |∆n(k)| =
1 and δ ∈ < is varied in the range of [0,2]. We consider
sampling of M = 21 points on the TRC. To evaluate the
effectiveness of the proposed parameterization methods,
π : X → Y subject to measurement noise, ε, we consider:

dX(π−1(κ), π−1(κε)) = ∆ECEI2000−DE , {κ, κε} ∈ Y

where ∆ECIE2000−DE denotes the CIE 2000 color differ-
ence formulation [3] of C1 = π−1(κ) ∈ X and C2 =
π−1(κε) ∈ X . C1 and C2 are 3-dimensional vector is
the CIELAB colorspace obtained from the parameterized
1-dimensional representation ( the empirical or the model-
based parameterization method ) by a look-up table ap-
proach. For every noise level, δ, we evaluate the `∞ norm
of ∆ECIE2000−DE . The evaluated parameterization meth-
ods with a short description is given in Table 1.

Notation Description
EP Empirical base parameterization method

YNSNP Parameterization based on YNSN model
LAB Using L∗ from CIELAB colorspace

Table 1: Evaluated parameterization methods
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Figure 4: Comparison of ‖∆ECIE2000−DE‖∞ at varying noise
level δ for different parameterization methods

Figure 4 shows the performance of the evaluated pa-
rameterization methods based on measurement noise of the
form given by (5). The result shows comparable perfor-
mance between the model-based and empirical-based pa-
rameterization approach. The empirical-based approach is
computationally fast and is simple to apply. For a sin-
gle primary color it is the preferred choice. In contrast,
the model-based approach requires high computational re-
quirements for minimization but will be useful when ex-

tending the parameterization to cover color combinations.
The model-based approach is also preferred when we have
limited number of experiments to define the parameteri-
zation curve. The YNSN model takes advantage of the
physics behind the subtractive coloring process to predict
the color behavior in region where the empirical data is
sparse. This will be especially critical for parameterizing
the 3-dimensional color gamut. As expected is it undesir-
able to arbitrarily use a single axis of the CIELAB color-
sapce( in this case L∗ ) to stabilize the TRC.

The simulation on the effectiveness of the parameteri-
zation methods are based on the assumption that the mea-
surement noise is of the ideal form of (5). This model as-
sumed that the measurement noise of the 3-dimensional
representation is randomly distributed in a sphere as shown
in Figure 5(a). Experiments were carried out to charac-
terize the measurement noise for a scanner (CanoScan N
650U) and spectrophotometer (GretagMacbethTM Spectrolino).
100 repeated measurements were taken on the same pri-
mary cyan wedge of different tones using both devices.
The nominal curve, C∗lab, parameterization parameters and
scanner calibration parameters are obtained from a sepa-
rated training set. Figure 5 shows the noise characteriza-
tions of the simulated model, the scanner and the spec-
trophotometer. The result shows the uniformity of noise
distribution with the actual color measuring devices. As
expected, the measurements from the scanner are more
noisy compared to that taken from the spectrophotometer.
We conclude that the noise model of (5) is a valid char-
acterization of the actual measurements noise. Hence, the
parameterization performance using the measurement data
from the scanner and spectrophotometer as shown in Fig-
ure 6 and 7 respectively, are similar to that obtain through
simulation.

Conclusion

This paper addressed the problem of parameterizing the
3-dimensional colorspace into a 1-dimensional represen-
tation such that the influence of measurements noise can
be minimized. The results presented here shows that it
is undesirable to arbitrarily select a coordinate axis of the
CIELAB colorspace for the TRC stabilizing control. In-
stead, the empirical-based and the model-based parameter-
ization approaches are shown to be more effective in min-
imizing the effect of measurement noise for the TRC sta-
bilizing control. Although the empirical-based approach
can yield a more accurate parameterization curve and is
computationally simple, this method cannot be easily ex-
tended for parameterizing the 3-dimensional color gamut.
The number of experiments required to define the parame-
terization manifold i.e. the space where the 3-dimensional
representation is projected onto, would be prohibitive for
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Figure 5: Noise characterization for the modeled and actual measurement noise in the CIELAB colorspace
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Figure 6: Comparison of ‖∆ECIE2000−DE‖∞ at varying
noise level δ for different parameterization method of the 3-
dimensional measurement data using the scanner. δ is estimated
from |Clab − C∗lab| where C∗lab is the nominal curve

practical purpose. The model-based approach gives good
parameterization results albeit higher computational require-
ments. The extension of this method to cover the entire
color gamut requires less empirical data. This extension
will be further explore in the future.
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Figure 7: Comparison of ‖∆ECIE2000−DE‖∞ at varying
noise level δ for different parameterization method of the 3-
dimensional measurement data using the spectrophotometer. δ

is estimated from |Clab − C∗lab| where C∗lab is the nominal curve
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