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Abstract 

A theory of toner adhesion to a conductive plane is suggested 
which takes into account the electrostatic proximity force. 
The proximity force is due to the attraction of charges on the 
toner particle in close proximity to the conductive plane to 
their respective image charges. In this paper the origin of the 
proximity force is discussed and experimental verification of 
this theory of toner adhesion is presented using a 16 micron 
diameter, ground toner with silica additives. The theory is fit 
to complete curves of the development and residual mass per 
unit area, charge-to-mass ratio, and size distribution in an 
electric field detachment experiment. The observed adhe-
sion and ratio of the measured toner adhesion to theory is the 
lowest every observed (to the authors’ knowledge).  

I. Introduction 

Toner adhesion is active in the subsystems of 
electrophotography in which toner particles are moved 
between surfaces, including development, transfer, and 
clean. Yet the source of toner adhesion remains under 
discussion, despite intensive investigations starting with the 
work of Goal and Spencer,1 a review by Hays,2 papers by 
Gady and co-workers3 and others.4 

The charge on the surface of a toner particle is 
sometimes modeled as a spherically symmetric charge 
distribution. A theoretical model of the adhesion of a 
spherically symmetric charge distribution to a conductive 
plane is examined, one of the components of adhesion. 
People often assume that a spherically symmetric charge 
distribution can be equivalently replaced with a single point 
charge in the center of the sphere. This is true only in the 
case of an isolated sphere. It relies on spherical symmetry to 
apply Gauss’ Law. However, in the situation in which the 
spherically symmetric charge distribution is in contact with a 
conductive plane, the spherical symmetry no longer exists 
and no simple integral can be found to apply Gauss’ Law. 
Since the conductive plane is an equipotential, the method of 
images can be used. We will show that the simple model 
(which assumes that the spherically symmetric charge 
distribution can be replaced by a point charge in the middle 
of the sphere) underestimates the force of adhesion because 
it ignores the force due to the charges in the proximity of the 
conductive plane.5 Therefore the force of adhesion has three 

terms6, the usually assumed image force, the proximity force 
times the number of contact points, and the van der Waals 
force. Experimental verification7 of this new theory is 
presented for a 16 micron diameter, ground toner with silica 
added to its surface.  

II. Proximity Force Theory 

A spherically symmetric charge distribution is modeled by 
using finite element analysis both analytically and with 
numerical calculations. In Fig. 1 we place the toner charge in 
charge points around N annuli on a sphere of diameter d 
resting on the conductive plane at z = 0. The charge points 
are chosen using polar coordinates to maintain a constant arc 
length d∆φ/2  between charge points in the two orthogonal 
directions. Therefore, the vertical angle between two 
adjacent annuli, ∆φ, is simply given by π/N. Since, the 
circumference of each annulus is different, they each hold a 
different number of charge points. The number of charge 
points for the ith annulus is given by 
 

1022 −=+= N,...,i)N/N/isin(Nki ππ        (1) 

 
The π/2N term maintains the correct charge density at 

the tip. This equation is derived by dividing the 
circumference (πdsin(i∆φ+∆φ/2)) by the arc length d∆φ/2 
where ∆φ=π/N. The total number of charge points, K, can be 
derived by dividing the total surface area of the sphere by the 
area that a charge point occupies, (dπ/2N)2 giving K=4N2/π. 
The charge q in each charge point is the total charge on the 
sphere Q divided by K or q=Q/K=Qπ/4N2.  

The number of charge points on the first annulus nearest 
the conductive plane is given, in the limits for a large N, by 
 

 ππ ≈= )N/sin(Nk 220         (2) 

 
The plane of the ith annulus crosses the z-axis at  
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Using the first two terms of the Taylor series expansion, 
the separation z0 of the first annulus from the reference plane 
z = 0 is given by: 
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Consider the electrostatic forces due to the interactions 

between the charge points located in proximity to the 
conductive plane (which are on the first annulus) with their 
image charges located symmetrically across the conductive 
plane. Using Coulomb’s Law, the force on a single charge 
point q in the first annuli by its own image charge point F11 
located symmetrically across the conductive plane is  
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using Eqs. 4 and the expression of q. The functional 
dependence of q and z0 on the number of annuli N cancels 
out. Since there are approximately π charge points in the first 
annuli (Eq. 2), the contribution to the electrostatic force by 
these charges, which we will call the proximity force Fp, is 
 

.
4

4
1

2

2

0
11 ππε

π
d

Q
FFp ==

         (6) 
 

This is a remarkable result. Only a few point charges 
with a fractional charge q, which are located in the vicinity 
of the contact point can generate an attractive force 1.27 
(4/π) times greater than a charge point of charge Q located in 
a center of a sphere. We note that this result is independent 
of the number of annuli, N, in the limits of large N, which 
suggests that this result is independent of the particular 
charge distribution chosen for this calculation.  

In principal, all of the other image charges contribute to 
forces on the charges in the first annuli, which are identified 
as F12, F13, etc. However, for a large N, the separation 2z0 is 
small compared to the distance to all other charge points. 

Since the number of charge points in the proximity 
annulus is much smaller than the total number of charge 
points, i.e. k0<<K, the rest of the charge points can be 
considered as a complete sphere of charge. This can be 
modeled by the usual method of placing a single charge in 
the center of the sphere, giving for the force for the bulk of 
the charges Fb 
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The total electrostatic force is just the sum of the 
electrostatic forces due to the bulk of the charges Q from Eq. 
7 and due to the proximity charges from Eq. 6. This simple 
derivation shows that a closed form solution for the 
electrostatic force of a spherically symmetric charge 
distribution in contact with a conductive plane can be 
derived in a straightforward way and provides a useful and 
universal result.  

Numerical calculations, in which the number of annuli 
and the distance of the sphere from the conductive plane are 
varied are shown in Fig. 2. At contact, the numerical 
calculations agree with analytical theory.  

III. Theory of Toner Adhesion 

Having shown that a spherically symmetric charge 
distribution has a force of adhesion to a conductive plane 
that is composed of two parts, one of which is due to a newly 
identified proximity force, we now apply this result to toner. 
Assume that toner particles are not perfect spheres and 
consequently have many contact points. We suggest that at 
each contact point the proximity force is active. If there are 
np contact points, the force of adhesion is  
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where the last term takes into account van der Waals forces.3 
ωA is the thermodynamic work of adhesion and R is the 
effective radius of the asperities of the particles in contact 
the plane (either toner or silica asperities) and n is the 
number of toner (or silica) asperities which contribute to the 
adhesion.  

The large discrepancy between reported measurements2 
and calculated adhesion based on the image force of Eq. 7 is 
easily resolved if np is on the order of 10 to 40 contacts, 
which is not unreasonable. Further, large distribution of 
forces, which are also observed, can be ascribed to large 
distributions of contact points among the toner particles. 
Quantitative experimental verification of this theory is 
presented in the next section.  

IV. Experimental Verification 

An electric field detachment experiment was carried out in a 
single component development system in which the toner is 
charged against an aluminum development roller after 
passing under a counter rotating supply roller and a 
polyurthethane doctor blade (all tied together electrically). A 
metal cylinder was spaced 150 microns from the 
development roller moving at the same speed (usually 55 
mm/s, although experiments at 2x, 0.5x and at zero speed 
gave the same results). A bias voltage between the metal 
cylinder and the development roller allowed for the electric 
field detachment experiment. The toner mass per unit area 
M/A and charge to mass ratio Q/M can be measured with 
standard vacuum pencil techniques both on the cylinder and 
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remaining on the development roller (“residual”). Collected 
toner in the filter of the vacuum pencil can be analyzed by 
the Coulter Counter for toner size distributions.  

Toner "develops" from the development roller to the 
metal cylinder when the Coulomb force QE exceeds the 
force of adhesion where E is the applied field. Expressing E 
as V/L where L is the gap, toner develops when V is larger 
than (using Eq. 8). 
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where ρ is the toner density and Q/M is the charge-to-mass 
ratio.  

Our procedure is to measure the size distribution of the 
toner on the development roller and then to use the 
experimental charge distributions reported in Ref. 8 and 9 to 
guide a choice of charge distribution which will give the 
measured average Q/M. This results in a set of particles each 
with its own Q/M and d, which can be tested against Eq. 9 to 
determine at what voltage the particle develops. The 
developed and residual M/A, Q/M and size distribution can 
then be predicted in a Monte Carlo simulation.  

The experiment and theoretical fit for a 16 micron 
diameter, ground toner with a monolayer of silica on the 
surface, with Q/M = 5.3 µC/g are shown in Fig. 3 and Fig. 4. 
The data are shown in Fig. 3. On the top left is development 
efficiency, scaled to 100% of the toner on the development 
roller. The top right is a plot of developed and residual Q/M. 
The bottom left is the developed particle size distribution 
(derived from Coulter Counter data by converting the 
diameter axis to uniform increments to make it easier to 
compare to theory). The bottom right is the residual particle 
size distribution. The best fits to the data are given in Fig. 4. 
With very few parameters, all of these curves were fit and the 
values of the parameters obtained were all reasonable: (1) the 
two parameters which characterize the charge distribution 
are highly constrained by the requirement that the charge 
distribution be similar to published curves and the charge 
distribution had to give the measured Q/M. (2) The value of 
the van der Waals force is small, which results directly from 
the observation of a finite but small intercept in the top left 
curve of Fig. 3. The result that the van der Waals force is 
small is almost surely due to the addition of silica to the 
surface of the toner and is in agreement with prior work.4 (3) 
np, the number of contact points, for most of the toner was 
between 1 and 2.8, which can be rationalized as follows: as 3 
points define a plane, most toner is balanced on the planer 
metal surface by three points, probably three silica particles. 
Some, however are balanced against neighboring toner, so np 
is slightly lower. The adhesion predicted based by Eq. 7 is 
4.5 nN; the adhesion observed at the 50% point (190 volts) 
in Fig. 3 is 14.2 nN. The value of the adhesion and the ratio, 
3.2, are the lowest ever reported (to the authors’ knowledge). 
(4) About 15% of the toner has much higher adhesion, as 
might be expected of a ground, manufactured toner.  
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Figure 1. Sphere with points of charge. 
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Figure 2. Correction factor, which is the total electrostatic force (Eq. 6+Eq. 7) normalized to F
b
 (Eq. 7) vs. separation distance s between 

the sphere and the conductive plane, and N, the number of annuli, for a 6 micron radius sphere. The three curves are for N=40, 90, and 
180. 
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Figure 3. Experimental data taken on 16 micron toner which has about one monolayer of silica on the surface. The upper left is the 
development efficiency (developed mass per unit area normalized to the mass per unit area on the development roller). The upper right is 
the developed and residual Q/M. The lower left is the size distribution of the toner developed at each voltage. The lower right is the size 
distribution of the toner left behind (residual) at each voltage.  
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Figure 4. Best fit to the data. The theoretical curves are superimposed on the data in the upper two graphs. The predicted size distribution 
of the developed (left) and residual (right) toner can be compared with the data given in Figure 3.  
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