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Abstract  

Error diffusion is a popular technique for digital halftoning. 
The purpose of this paper is to illustrate the versatility of 
error diffusion with applications beyond halftoning and to 
show its connections to interesting mathematical questions. 
We present some recent developments in the theory and 
application of error diffusion and related algorithms. In 
particular, we illustrate the stability of error diffusion and 
present applications in a variety of areas besides image 
halftoning including scheduling, image processing, image 
watermarking and displays. 

Introduction  

Printers, both digital and analog, utilize a few colors to 
produce the wide variety of colors we see in printed images 
by means of halftoning. Halftoning is the art of producing an 
image with a few colors so that at a suitable distance the 
image appears to consist of many colors. In digital printers, 
the image is decomposed into a regular grid of pixels and 
digital halftoning algorithms produce a halftone image 
whose pixels comprise a few output colors such that it 
resembles an input image whose pixels comprise of many 
more colors from the input color space.  

We describe the halftoning problem as follows. Given 
an input image I, where each pixel I(i,j) at location (i,j) is a 
vector in the input color gamut S, the goal is to generate an 
output image O whose pixels O(i,j) are vectors from a 
restricted set V of output colors such that the output image O 
resembles the input image I when viewed at some distance. 
In general the input color gamut S and the output colors V 
are chosen to be set of vectors in a color space such as Lab, 
RGB or XYZ.  

Error diffusion, invented in 1975,1 is a relatively fast 
technique for digital halftoning of images and generates high 
quality halftones. The basic idea of error diffusion is the 
following: errors occurred due to the discrepancy between 
the output pixel value and the input pixel value is propagated 
to neighboring pixels. At each pixel, the output pixel color is 
chosen based on the modified input pixel value, which is 

defined as the input pixel value plus the errors that were 
propagated from other pixels. More specifically2:  

 
 

Definition 1 An error diffusion algorithm is defined by the 
following steps:  
 
1. Choose an enumeration of the pixels;  
 
2. At each pixel location (i,j), add to the input pixel I(i,j)a 

weighted average of the previous errors (in some 
neighborhood N(i,j) of I(i,j)), thus defining a modified 
input  

 

( ) ( )
( ) ( )

( ) ( );l,kEl,k,j,iwj,iIj,iM
j,iNl,k ∈

Σ+=  

 
3. Choose O(i,j) as an element of V closest to M(i,j);  
 
4. Define the error E(i,j) as M(i,j) − O(i,j).  
 
5. Reiterate until all pixels are processed.  
 

In practice, the error diffusion weights w(i,j,k,l) are cho-
sen to sum to 1 and are shift-invariant, i.e. they can be 
written as w(i − k, j − l). In Definition 1, the output pixel is 
chosen as the output color closest (in the metric of the color 
space) to the modified input. This requirement can be 
relaxed to obtain the class of (not necessarily deterministic) 
generalized error diffusion algorithms2:  

 
 

Definition 2 A generalized error diffusion algorithm is de-
fined by the following steps:  
 
1. Choose an enumeration of the pixels;  
 
2. At each pixel location (i,j), add to the input pixel I(i,j) a 

weighted average of the previous errors (in some 
neighborhood N(i,j) of I(i,j)), thus defining a modified 
input  
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3. Choose O(i,j) depending on M(i,j) such that O(i,j)∈ V;  
 
4. Define the error E(i,j) as M(i,j) − O(i,j).  
 
5. Reiterate until all pixels are processed.  
 

Bounded Errors and BIBS Stability in  
Error Diffusion 

The original error diffusion algorithm was developed for 
grayscale images where the input gamut S is the unit interval 
of gray values and V = {0,1} are the two endpoints of the 
interval S, the colors black and white. A stability analysis for 
this case, also called scalar error diffusion, can be found in 
Ref. [3]. Until recently, little is known about the stability of 
error diffusion when the color spaces are higher dimensional 
spaces.* In particular, will the error grow arbitrarily large? 
The following result gives necessary and sufficient 
conditions for the existence of a generalized error diffusion 
algorithm such that the errors are bounded for color spaces in 
any dimension and arbitrarily large images2:  
 
 
Theorem 1 Suppose that V and N(i,j) are finite sets. S is 
contained in the convex hull of V if and only if there exists a 
generalized error diffusion algorithm such that all input 
images generate bounded errors.  

 
Thus the input gamut should be in the convex hull of the 

output colors to ensure bounded errors in (generalized) error 
diffusion. In order to prove one direction of Theorem 1, a 
generalized error diffusion algorithm is constructed in which 
errors, inputs and modified inputs are expressed as linear 
combinations of output vectors and all the operations are 
performed on the coefficients of these linear combinations. 
For simplicity in the sequel, pixels will be indexed by a 
single index i. Let V ={v1,...vd}.  

 

Algorithm 1  
1. Choose an enumeration of the pixels;  
 
2. Expand the input I(i) as a (not necessarily unique) 

convex sum of points in V, i.e. I(i) = ∑µ jvj ;  
 
3. At each pixel add to the input I(i) the previous error  

E(i− 1), thus defining a modified input as M(i) = I(i) + 
E(I − 1);  

 

4. Express M(i) = Σvj
∈V λijvj as a linear combination of 

points in V as follows: if E(I − 1) = ∑δjvj, then λij = µ j + 
δj.  

5. Choose the output O(i) as an element vj* of V that 
satisfies λij* ≥ β for some fixed β (the value of β can be 
chosen to be any number less than or equal to 1/d where 
d is the cardinality of V); 

 
6. Define the error E(i) of the current pixel as M(i) − O(i) 

in the following way. If O(i) = vj*, then E(i) = ∑κjvj 
where κj = λij when j ≠ j* and κj* = λij* − 1.  

 
 

The proof of Theorem 1 shows that κj ∈ [β − 1, (1 − 
β)(d − 1)], i.e. there exists an arbitrarily large region for the 
error which is invariant for Algorithm 1 under all input 
images. Considering the error as a state of a dynamically 
system, this condition is sufficient for Bounded-Input-
Bounded-State (BIBS) stability.5 For simplicity, we have 
written Algorithm 1 for the case where the neighborhood 
N(i,j) consists of a single pixel, i.e. the error from the 
previous pixel is added to the current pixel to create the 
modified input (M(i) = I(i) + E(i − 1)). We call this case one-
step error diffusion. The boundedness result is also true for 
general sets of nonnegative weights w(i,j,k,l) such that 
∑k,lw(i,j,k,l) = 1.2  

When the output pixel O(i) in Algorithm 1 is chosen as 
the element vj* ∈ V such that λij* is the largest,† it is easy to 
show that the resulting algorithm is equivalent to mapping 
the convex hull of V to the probability simplex of dimension 
d − 1, performing error diffusion on the simplex and 
projecting the results back onto the color space. Let us refer 
to this as Algorithm 1a.  

Algorithm 1 and 1a are generalized error diffusion al-
gorithms. Is the error bounded for (classical) error diffusion 
as defined in Definition 1? This turns out to be a difficult 
question whose answer is affirmative. When the color space 
is one or two-dimensional, it is relatively easy to prove this.6 
For the higher dimensional case, this question is much more 
difficult to answer.7 To answer this question, an bounded 
invariant region for the modified input (which implies a 
bounded error) is shown for the case of one-step error 
diffusion. By Theorem 5 in Ref. [2], this result is also true 
for arbitrary neighborhoods and weights.  

On the other hand, generalized error diffusion as in Al-
gorithm 1 performs better than error diffusion in some cir-
cumstances. For instance, error diffusion in color spaces 
such as Lab results in boundary artifacts due to large errors.8 
By using Algorithm 1a, this error can be made smaller.9 
Another example is the case where there are 3 output colors 
forming a triangle in 2-dimensional space. When one of the 
angles of the triangle is very close to 180°, it is easy to see 
that error diffusion can have arbitrarily large errors 
independent of the diameter of the triangle, whereas the 
errors in Algorithm 1 remain bounded with the bound 
depending only on the diameter.  

Error diffusion and halftoning in general can be consid-
ered as an approximation problem. The goal is to approxi-
mate the input image I by the output image O such that the 
distance between I and O is small. A commonly used metric 
d(O,I) to measure the perceptual difference between I and O 
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is to apply a lowpass filter to both images and calculate the 
norm of the difference between them. This can be expressed 
as d(O,I) = ||L(O) − L(I)|| where L denotes the lowpass 
operator model of the human visual system.  

So far, we have presented results which bound the error 
E(i). Is there a relationship between E and the perceptual 
metric d(O,I)? It was shown in Ref. [2] that boundedness of 
E in error diffusion implies that the distance d(O,I) is also 
bounded independent of the size of the image and that the 
more low pass the filter is, the smaller this distance is. This 
implies that at high enough resolution, d(O,I) is small and 
(generalized) error diffusion generates a good halftone im-
age. This validates the operation of error diffusion, even 
vector error diffusion in higher dimensional color spaces. 

Applications to Scheduling  

Consider the “Chairman Assignment Problem”10,11:  
 

Let X = {x1,...,xd} be a finite set, d ≥ 2, and let µi be 
measures on X with µi(xj) = λij ≥ 0 for 1 ≤  j ≤ d and Σ d

j 1=  λij 
= 1 for all i. For an infinite sequence ω = ( )∞=1nnω  in X let 
A(j,n,ω) denote the number of occurrences of the elements xj 
among the first n terms of ω and let D(ω) = supj,n |A(j,n,ω) − 
Σ n

k 1=  λkj |. 
 
An application of this is a scheduling problem where d 

tasks compete for resources where at each time a single task 
is scheduled on the resources and each task requests a 
specific proportion of the resources.12  

We consider algorithms which given µ i, generate a 
sequence ω such that D(ω) is small. We distinguish between 
online algorithms where ωi depends only on λkj for k ≤ i and 
offline algorithms. The terminology more appropriate for 
signal processing is causal algorithms versus non-causal 
algorithms. In Ref. [11], an optimal offline algorithm is 
presented for solving this problem.  

For one-step error diffusion, the error E(i) is equal to 
Σm<i I(m) − O(m). It is easy to see that one-step error 
diffusion provides an online solution to the Chairman 
Assignment Problem. In particular, by considering the 
coefficients of the input pixel I(i) in Algorithm 1 as the mea-
sure µ i, we see that error diffusion gives a solution to the 
Chairman Assignment Problem with bounded discrepancy 
D(ω) (see Ref. [2] for more details).  

Furthermore, one-step error diffusion on the probability 
simplex (Algorithm 1a) is optimal among all online 
algorithms for several scheduling problems including the 
Chairman Assignment Problem.13  

This connection between error diffusion and scheduling 
can also benefit digital halftoning. For instance, the optimal 
offline algorithm presented in Ref. [11] can be cast into a 
non-causal halftoning algorithm which can generate smaller 
errors than error diffusion.2 

Novel Applications in Image Processing  

In the next section we present some applications of error 
diffusion to image processing besides image halftoning.  

Imaging Viewable Under Different Conditions  
Consider the scenario where a pixel behaves differently 

under different viewing conditions. The viewing conditions 
could be temperature, viewing angle, lighting condition, 
viewing apparatus (e.g. lens), etc. We would like to create 
printed (or displayed) images such that different images are 
seen depending on the viewing conditions. Digital 
halftoning, in particular error diffusion, provides a solution 
to this problem when the viewing conditions do not separate 
cleanly.  

The main idea is to consider pixels living in the Carte-
sian product of color spaces. In other words, to each pixel P 
corresponds an n-tuple (p1,..., pn) of points. Each point pi is a 
vector in some color space Ci. Each pi describes what the 
pixel P looks like under the i-th viewing condition, 1 ≤ i ≤ n. 
We need enough output pixels which cover this product 
space in a nice way. The set of n input images is then 
converted into a single image in this product space. 
Performing halftoning in this product space results in an 
image which appears as different images depending on the 
viewing condition. An application of this algorithm to TN-
mode LCD displays is presented in Ref. [14] where an image 
is constructed which when displayed on a LCD screen 
appears as different images depending on the viewing angle.  

This idea of halftoning in product spaces is very useful 
as the following application indicate.  

Data Hiding and Self-Repairing Images  
Error diffusion has been found to be useful for image 

watermarking and data hiding.15,16 In these methods, the 
embedded data or payload is relatively small compared to the 
source image. On the other hand, the algorithm in the 
previous application can be used for data hiding or image 
watermarking applications where an entire image can be 
embedded into another image.17 A source image is con-
sidered as the first viewing condition and the watermark or 
hidden data is the second viewing condition. The way a pixel 
looks in the second viewing condition is chosen to minimize 
distortion in the watermarked image.  

By embedding a scrambled version of the image into the 
same image, tampering to the image can be detected and 
reversed. This is accomplished by detecting where the 
tampering occurs and using the embedded image to correct 
the tampered parts of the image. One feature of this tech-
nique is that the reconstruction degrades gracefully as the 
tampering increases, i.e. the smaller the area tampered, the 
better the reconstruction is.  

In Ref. [18], this data hiding method is generalized to 
embed m watermark images in n halftone images, where the 
extraction of the watermark images is performed via pixel-
wise operations of the halftone images. For example, for the 
case m = 1, n = 2, the watermark image can be extracted by 
simply overlaying the 2 halftone images. Compared to other 
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methods of watermarking with overlays which also uses 
error diffusion,19 this method has the advantage of being able 
to extract high detail watermarks with high fidelity.  

In these applications, suitable gamut reduction is usually 
needed to map the input space into the convex hull of the 
output pixels in order not to have large errors.  

 

Imaging Scaling in DCT Domain  
In the JPEG image compression format, the images are 

first divided into 8 by 8 blocks and transformed to the DCT 
domain and the DCT coefficients are processed to achieve 
compression. Since images are best stored and transmitted in 
compressed form and it is time consuming to compress and 
decompress an image, there is a need to be able to perform 
operations on images in compressed form. In Ref. [20] a 
method to scale images is proposed which operates in the 
DCT domain, eliminating the need to convert to the spatial 
domain to perform the scaling operations. The main idea is 
to have efficient algorithms which can perform scaling 
operations in the DCT domain for several fixed ratios of 
scaling. An arbitrary ratio can then be approximated by a 
sequence of fixed ratios such that on average the scaling is 
correct. This sequence is found via error diffusion. This 
algorithm can scale images faster than spatial algorithms. 
The approximation error causes distortion in the scaled 
image, but in many cases this distortion is visually 
unnoticeable.  
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