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Abstract 

Triphenyl-pararosaniline (TPPR: Fig. 1) and a gallate 
derivative (PG: Fig. 2) are charge-control agents (CCA) of 
the positive and negative type, respectively. Furthermore, a 
1:2 complex of TPPR and PG (colored deep blue) has been 
reported to be a powerful CCA due to the formation of a 
charge-transfer (CT) complex. The electronic structure of the 
present complex has been investigated in solution and in the 
solid state in order to clarify the charge-transfer mechanism. 
Quite contrary to our expectation, the blue color is found to 
arise from protonation of TPPR by means of PG, not due to a 
CT transition between TPPR and PG. 
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Figure 1.  Triphenyl-pararosaniline (TPPR). 
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Figure 2. n-Propyl gallate (PG) 

 

1. Introduction 

Triphenyl-pararosaniline (TPPR: Fig. 1) is a leuco dye based 
on the triphenylmethane skeleton. TPPR is colored light 
brown in solution in MEK(methylethylketone) as well as in 
the solid state. However, the color changes drastically into 
deep blue in the presence of acidic compounds. On the other 
hand, n-propyl gallate (PG: Fig. 2) is an acid which has three 
hydroxides of the phenol type. Both TPPR and PG are also 
known as charge-control agents (CCA: used for toners) of 
the positive and negative type, respectively. Furthermore, the 
charge-control ability is greatly improved when a 1:2 charge-
transfer (CT) complex (colored deep blue) is formed between 
TPPR and PG.1 For this reason, an attempt has been made in 
the present investigation to clarify the electronic structure of 
the CT complex in order to clarify the charge-control 
mechanism. 

2. Experimental 

2-1. Sample Preparation 
TPPR and PG were obtained from Morimura Chemical 

and Kanto Kagaku, respectively. An ethanol solution 
containing a 1:2 complex of TPPR and PG was prepared for 
measurements of solution spectra. On the other hand, a thin 
solid film was also prepared by spin coating technique, using 
a MEK solution of the 1:2 complex. The thickness is about 
1000 Å. 
 
2-2. Measurements 

Absorption spectra in solution and in the solid state 
were measured on a UV-2400PC spectrophotometer 
(Shimadzu). 
 
2-3. Molecular orbital (MO) Calculations 

Geometry optimization was carried out by means of the 
AM1 Hamiltonian of MOPAC program package.2 The 
INDO/S program used for spectroscopic calculations is part 
of the ZINDO program package.3 Geometry optimization and 
subsequent spectroscopic calculations were made for the 
initial state of TPPR as well as mono-, di- and tri-protonated 
states. 
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1. Results and Discussion 
 

3-1. Solution Spectra 
Figure 3 shows the solution spectra in ethanol for TPPR 

and TPPR/PG (1:2). Surprising to say, the absorption 
maxima of both spectra occur exactly at the same wavelength 
(about 600 nm) and the color is deep blue. As stated in 
Introduction, TPPR is light brown both in MEK (abs. 
maximum: around 460 nm as shown later in Fig. 5) and in 
the solid state. Judging from the above results, we assumed 
that PG (an acid) turns TPPR vivid blue due to protonation 
while TPPR is also protonated due to ethanol which is 
slightly acidic. That is, TPPR is highly sensitive to protons. 
We further supposed that protonation takes place at the 
double bonded N atom which is the electron-richest part in 
the solid state (Fig. 1).  
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Figure 3. Absorption spectra in an ethanol solution. 

 
3-2. Absorption Spectra in the Solid State 

Figure 4 shows the absorption spectrum of spin-coated 
TPPR/PG and the diffuse reflectance spectrum measured on 
powders. The absorption maximum appears in both spectra 
around 603 nm which is slightly displaced toward longer 
wavelengths as compared with those of solution spectra (Fig. 
3). The present bathochromic displacement can be 
interpreted in terms of di-protonation as shown by the 
following experiments. 
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Figure 4. Absorption spectrum of TPPR/PG in the solid state. 

3-3. Spectral Changes of TPPR Due to Protonation 
Figure 5 shows the solution spectra of TPPR, mono-

protonated and di-protonated TPPR with HCl. A broad 
absorption maximum appears in TPPR around 460 nm. 
Mono-protonation (TPPR/HCl=1/1) displaces the absorption 
band to about 600 nm. Di-protonation (TPPR/HCl=1/2) 
induces a further bathochoromic shift by about 10 nm. 
Addition of excess HCl brings about no further change in 
spectral shift. 
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Figure 5. Solution spectrum of TPPR in MEK and its spectral 
change due to the addition of hydrochloric acid. 

 
 
3-4. Color Generation Mechanism Due to Protonation 

In order to generate a color in chemical compounds, 
there must exist an electron-conjugated system called 
“chromophore” together with “auxochromes” (i,e. electron 
donor and acceptor). That is, the chromophore should be 
sandwiched between electron donor and acceptor groups in 
order to construct a “push-pull” system. In the TPPR 
molecule shown in Fig. 1, we can definitely recognize an 
electron-conjugation system (i.e. bond alternation) as well as 
two electron donating groups based on the >NH group. 
However, an electron acceptor part is missing in TPPR. For 
this reason, TPPR is incapable of inducing an intense optical 
absorption in the visible region. However, protonation at the 
double-bonded N atom (-N=: the electron-richest part) 
creates newly an electron acceptor part (i.e. -N+H=) and 
facilitates the electron transfer from the donor to the acceptor 
part as shown in Fig. 6. That is, the protonation forms an 
effective push-pull system, so that the electron can be 
transferred from the donor part (NH group) via an electron-
conjugated system to the acceptor part (NH+ group) and vice 
versa. A deep blue color appears in this way. Further 
protonation occurs also at the NH site to displace the 
absorption maximum still toward longer wavelengths, as 
supported by MO calculations shown below. 
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Figure 6. Protonation at the double-bonded N atom which is the 
electron-richest part.  

 
3-5. MO Calculations for the Initial, Mono-Protonated, 
Di-Protonated and Tri-Protonated States 

Table 1 details the heat of formation and absorption 
maxima calculated for the initial (Fig. 1), mono-protonated 
(Fig. 7(a)), di-protonated (Fig. 7(b)) and tri-protonated (Fig. 
7(c)) states. 

 

Table 1. Results of MO Calculations 

 

Heat of 
formation 

（kcal/mole） 

Absorption 
maxma（nm） 

Figure 

Initial state 219.8 374.6 Fig. 1 
Mono-

protonation       
(-N+H=) 

341.8 473.0 Fig. 7(a) 

Di-protonation    
(-N+H= & -

N+H2-) 
537.5 529.0 Fig. 7(b) 

Tri-protonation    
(-N+H=, -N+H2- 

& -N+H2-) 
778.5 453.7 Fig. 7(c) 

 
 

Mono-protonation at the double-bonded N atom (-N=: 
the electron-richest part) induces a large bathochromic shift 
by about 100 nm (374.6 → 473.0 nm), although the heat of 
formation is increased as compared with that of the initial 
state (219.8 → 471.0 kcal/mole). It is also apparent from Fig. 
7(a) that the two phenyl groups of the triphenyl methane 
system is co-planar to facilitate the electron transfer from the 
donor to the acceptor. Di-protonation (-N+H= & -N+H2-) 
makes the relatively planar system more perfect, leading to 
the further bathochromic shift. However, this induces an 
increase in heat of formation considerably (537.5 kcal/mole). 
The above mono- and di-protonations are qualitatively in 
good agreement with experiment. Tri-protonation disturbs 
greatly the planarity of the triphenylmethane system to cause 

a hypsochromic shift to occur (453.7 nm). At the same time, 
the heat of formation becomes extremely high (778.5 
kcal/mole). Therefore, tri-protonation is unlikely to occur in 
practice. 

 

 

(a) Mono-protonation 

 

(b) Di-protonation 

 

(c) Tri-protonation 

Figure 7. Optimized geometry of protonated TPPR. 
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Conclusion 

The electronic structure of a 1:2 complex of TPPR with PG 
has been studied from the standpoint of color generation 
mechanism. The following conclusions can be drawn from 
the present investigation. 
1. TPPR and PG do not form a CT complex. The deep blue 

color reported previously is due to protonation of TPPR 
by means of PG (1:2 complex). 

2. The charge-control ability of the 1:2 complex is 
presumably attributed to the property of protonated 
TPPR. 

3. The coloration of TPPR arises from protonation at the 
double-bonded N atom (i.e. -N=), leading to the 
formation of a powerful push-pull system. 
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