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Abstract 

Image segmentation is a first step to vision system and used 
as a pre-processing for many applications such as pattern 
recognition, image classification, picture coding or target 
tracking. In the previous papers, we reported an 
unsupervised image segmentation method based on 
Bayesian classifier and applied it to object-to-object color 
transformation. Although Bayesian decision rule is a robust 
tool to classify the objects statistically with the minimum 
error in average, it needs to preset some appropriate class 
centers before starting the classifier. The location of initial 
seed points much influences the segmentation accuracy. 
This paper discusses a better way to set the initial seeds and 
reports the Bayesian discriminator works better when 
coupled with k-means classifier for correcting the location 
of seed points. In addition, the paper introduces a new 
application of proposed model into scene color interchanges 
between segmented objects.    

Introduction 

Image segmentation is a low-level image processing task 
that aims at partitioning an image into homogeneous 
regions. How region homogeneity is defined depends on the 
application. A great number of works have developed the 
segmentation methods according to various criteria such as 
gray, color, texture, or shape. 

In the previous works, we reported an object-to-object 
color transformation strategy based on image segmentation.1-5 

Since the perfect segmentation is impossible in practice, 
our applications have been limited to a color transformation 
such as color correction, color matching or gamut mapping 
between two objects with color similarity, where the 
segmentation errors are not so striking. 

However, the more accurate segmentation is necessary 
for a color transformation between two objects with color 
dissimilarity. Once the colored objects are clearly segmented 
in a source and a destination image, they could be mutually 
interchanged from one to another. This paper proposes a 
setting method for initial seed points to improve the 
performance of Bayesian discriminator and introduces a new 
application to swap the scene colors.  

Image Segmentation by Color Clustering  

Figure1 illustrates the overview of unsupervised image 
segmentation process. First the image color distribution is 
analyzed in CIELAB space. Next the initial seed points 
located at the higher populations are extracted as a candid 
ate for the clustering centers. The location of seed points are 
corrected by k-means classifier. Then image segmentation 
by Bayesian discriminator is performed based on color 
clustering. Once the segmentation is successful, a region-
based color transformation is possible between the different 
objects in different scenes. 
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Figure 1. Overview of Unsupervised Color Image Segmentation 
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Bayesian Classifier with k-means Starter 

Color Distance Measure 
In the previous papers, we examined the following three 

typical color distance measures to discriminate the clustered 
color objects. 
 

[1] Euclidean [2] Mahalanobis [3] Bayesian discriminator 
 
Among them a well-known Bayesian discriminator 

worked best for many test samples. 

Setting of Initial Seeds Points 
To start an unsupervised color classifier for unknown 

image, any geometric centroid must be set in 3D color space 
as the initial seed points. Here we tested the following three 
methods for placing K number of initial seed points in 3D 
CIELAB space. 

A. Random 
Obviously, a random setting of seed points resulted in 

the worst and unstable segmentation, because it is 
independent of image color distribution. 

B. Box Center at Higher Pixel Density 
To select the more reliable seed points depending on 

image, we generated M=m3 pieces of rectangular boxes 
surrounded by the regular lattice points inside the min-max 
color ranges of image color distribution. 

The image color distribution is partitioned by a unit box 
with the size of ∆a × ∆b × ∆L 
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Let a color vector be Xn for n-th data point and µ for the 
mean vector  in CIELAB. 
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Here, we count up the pixel population P(k) existing 
inside the each box bk ; k=1~M. Next, K body centers with 
higher color population are selected as a candidate of seeds 
points. 
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These seed points are used as initial class centers for the 
color clustering in the next stage. 

C. Correction for B by k-Means  
Surely the method B sets a better initial class center 

than A depending on image color distribution, but µseed(k) 
isn’t placed at the center of each cluster but placed at each 

body center in uniformly divided unit box. In order to place 
these candidates at the right position, k-means clustering 
method was introduced to make correction for the 
selected )(kseedµ .    

K-means algorithm partitions (or clustering) N data 
points into K disjoint subsets Sｋ containing Nｋ data points so 
as to minimize the sum-of-squares criterion,  
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where µκ is the geometric centroid of the data points in Sk 

First the initial seed points )(kseedµ are assigned to k=1~K 
classes, then the centroid is re-computed after clustering and 
the seed points are renewed. The renewal is continued until 
no further change occurs in the centroid by iteration.  

Although k-means is used as unsupervised classifier by 
setting the initial seeds in random, here we applied this 
technique to relocate the initial seeds to the more reliable 
gravity centers in clusters. 

3.2 Bayesian Classifier 
According to the Bayesian decision rule, the maximum 

likelihood is obtained when the following quadratic 
discrimination function [6] is minimized for k. 
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where p(k) means the occurrence probability of class k. 
Thus a color vector X is classified into class k=c, if   

min{cd(Bayes)}k=1~K = cd (Bayes)     (6) 

Bayesian classifier is expected to work better when 
coupled with k-means clustering for setting the initial seed 
points. Here we call the coupled model as k-means 
Bayesian. 

Interchange in Segmented Scene Colors  

When the segmentation is successful, a flexible color 
transformation is possible for each individual cluster in 
attention. Reinhard et al7 tried to transfer the scene color of 
one to another, where the total atmosphere of source scene 
was transferred to that of reference scene. 

In our approach, individual object color is interchanged 
between a pair of source and target clusters in two different 
images. Here we applied object-to-object color matching 
algorithm5 in PC (Principal Component) space.  

First, PCs are extracted from the segmented color areas 
in both source and target images. Hotelling Transform in 
PCA (Principal Component Analysis) projects a color 
vector kX in class k into a vector kY in PC space as 

)( µXAY kkkk −=     (7)  
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The matrix kA is formed by the eigen vectors {ke1, ke2, ke3 

} of covariance matrix kΣX  as 

[ ]321 eeeA kkkk ,,=        (8) 

The covariance matrix kΣY of { kY } is diagonalized in 
terms of kA and kΣX whose elements are the eigen values as 
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Thus the color vectors in source and target images are 
mapped to the same PC space and the following equations 
are formed to make match a source vector jYORG in class j to a 
target vector kYDST in class k through a scaling matrix jkS. 
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Solving (10) and (11), we get the following relation 
between a source color jXORG and a target color kXDST which 
we want to interchange.  

)( ORGjORGjCjkDSTkDSTk µXMµX −=−
      (13) 

The matching matrix jkM
C
 is given by 

( )( )( )ORGjjkDSTkCjk ASAM 1−=    (14) 

where jAORG and kADST denote the eigen matrix for a source 
segment of class j and a target segment of class k.  

Experimental Results 

First the performance of k-means Bayesian classifier is 
evaluated in comparison with normal Bayesian classifier 
without k-means. Second, we tried to interchange the scene 
colors between two resemble images and to transfer a 
specified object color in source image into a different object 
color in target image.   

Comparison in Color Classifiers 
Figure 2 shows a segmentation result tested for image 

“daily flower”. The nine classifiers by the combinations of 
three color distance measures and three types of initial seed 
points are compared one another. All images are segmented 
to K=4 classes. As clearly shown in the top row, random 
seeds didn’t give any stable results, because they are placed 

at independent of image color distributions. In comparison 
with the results in 1st, 2nd and 3rd columns, Bayesian is better 
than Euclidean or Mahalanobis and k-means Bayesian in 
third row obviously works better than the normal Bayesian 
in second row. In conclusion, the proposed k-means 
Bayesian resulted in best performance.  

Figure 3 shows another result for image “Mt. Fuji”. In 
this sample, k-means Bayesian also worked excellent as 
compared with normal Bayesian.  

Interchange in Scene Colors 
Proposed k-means Bayesian classifier is applied for 

extract the object areas from source and target scenes and a 
pair of color distributions in segmented clusters are 
interchanged from one to another. Fig.4 shows a tested 
primitive sample. 

A red rose with dark green leaf is transformed into a 
pink rose with light green leaf and vice versa. 

Conclusions 

In this paper, we improved a conventional Bayesian 
classifier by coupling with a well-known k-means 
clustering method as a starter to set the initial seed points.  

The crucial difference in normal and improved 
Bayesians lies in whether the “initial seeds” are re-located 
or not with or without k-means preprocessor. Although the 
process speed a little bit goes down, the segmentation 
accuracy is much improved. In addition, an approach to 
object-to-object scene color interchange is challenged to 
open a new field of applications such as automatic creation 
or synthesis of scenes with similar atmosphere. 
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Figure 2. Comparison in image segmentations by color clustering methods 
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Figure 3. Comparison in segmentations by normal Bayesian and k-means Bayesian 

Figure 4. Application to scene color interchange
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