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Abstract 

Most of conventional image coding algorithms have reduced 
spatial redundancies for compressing data. In our previous 
works, we have proposed a novel coding algorithm focused 
on luminance-chrominance (L-C) redundancies. This paper 
presents an improved coding algorithm by using both spatial 
correlation and L-C correlation in an opponent color space. 
First of all, an input color image is divided into a luminance 
component and two chromatic components in the opponent 
color space. The chromatic components are divided into 
regions, and each region is averaged for reducing spatial 
redundancies. In order to reduce the L-C redundancies, a 
ratio of chrominance to luminance, we call C/L component, 
was newly introduced. Finally the spatially averaged C/L 
components in each region and wavelet-coded luminance 
data are transmitted as compact code. The color image can 
be restored without degrading its sharpness by the 
multiplication of transmitted averaged C/L components to 
decoded luminance data. Moreover, the proposed coding 
algorithm has an option to optimize the C/L components in 
S-CIELAB visual space. This paper discusses the 
performances of proposed coding algorithm with 
experimental results for natural full color test images. 

Introduction 

With the recent spread of the internet and multimedia 
technologies, digital images play more and more important 
role in human visual communications. In order to reduce 
image data quantity, several image compression algorithms 
have been developed. Most of them, such as JPEG, make 
use of the spatial correlation. In natural images, a strong 
correlation can also be observed among tri-color signals. 
However, the conventional algorithms were not fully 
utilizing the color correlation.  
 In 1990, one of the authors proposed a coding algorithm 
based on RGB color correlation.1 Recently, a human-based 
opponent color space S-CIELAB, which is a spatial 
extension to CIELAB, was proposed.2,3 In this paper, we 
focused on the signal correlation among luminance and 
chromatic components (L-C) in the S-CIELAB space, and 

propose a novel coding algorithm. In our algorithm, the 
redundancies of color components will be reduced by 
calculating the ratio of chrominance to luminance (C/L) and 
chromatic components will be spatially averaged 
remarkably by subsampling based on visual characteristics. 
Here, the spatial redundancies will be optimized in order to 
minimize the distance between an original image and the 
restored image in the S-CIELAB metric. 
 In the following sections, we introduce the procedure of 
the proposed coding algorithm and experimental results will 
be shown. 

Basic Coding Model with L-C Correlation 

Outline of the Basic Model 
The procedure of the proposed basic model of the 

image coding/decoding techniques is schematized in Fig. 1. 
First of all, an image represented by RGB color signal is 
converted into opponent color components O1, O2, O3 in 
the S-CIELAB color space, which will be defined in the 
next subsection. The S-CIELAB space was proposed by 
Zhang et al.2,3 as a spatial extension to CIELAB to account 
for how spatial pattern influences color appearance and 
color discrimination. The component O1 means luminance 
component and both O2 and O3 mean chromatic 
components. The sensitivity of the eye to luminance detail is 
higher than that of chrominance detail by human visual 
system. Therefore, in our algorithm, the luminance 
component O1 will be coded with the original resolution by 
wavelet transform coding. On the other hand, chromatic 
components O2 and O3 will be divided into regions, and 
each region is averaged for reducing spatial redundancies. 
Then, the spatially averaged ratio C/L is calculated and the 
ratios will be transmitted along with wavelet coefficients as 
compact code. 

The decoding process is very simple. The spatially 
averaged C/L ratio are upsampled by an interpolation 
algorithm Then, the restored chromatic components can be 
obtained by multiplying the upsampled C/L ratios by 
decoded luminance components.  

The detailed algorithm is explained in the following 
subsections. 
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Figure 1. Process coding with Luminance-Chrominance correlation: Basic model 

 

Color Conversion to an Opponent Color Space 
In the S-CIELAB space, the color transformation 

converts the input image, specified in terms of the CIE 1931 
XYZ tristimulus values, into three opponent colors planes 
that represent luminance O1, red-green O2 and blue-yellow 
O3 components. The linear transformation from XYZ to 
opponent colors is as follows:  
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−
−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Z

Y

X

O

O

O

501.059.0086.0

077.029.0449.0

107.072.0279.0

3

2

1

      (1) 

 
Coding and Decoding of Chromatic Components 

In the object color region, such as people's skin, the 
green of a leaf and the red of a flower, strong correlation 
among luminance and chromatic components are observed. 
Since the sensitivity of the eye to chrominance detail is 
lower than luminance detail, the proposed algorithm reduces 
the resolution for O2 and O3 components remarkably by 
subsampling. 

Let us consider opponent color components 
),,( 321 OOO  for an image of XxY pixels. Let 

),,( 321 LLL OOO be spatially averaged components by 
subsampling for every KxK pixels. Then, the following C/L 
ratios ),( 32 LL gg are transmitted instead of ),( 32 OO  
components. 
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In the decoding stage, the spatially averaged C/L ratios 

),( 32 LL gg are upsampled by an interpolation algorithm.  
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Then, the restored chromatic components )ˆ,ˆ( 32 OO can 

be obtained by multiplying the upsampled C/L ratio 
),( 32 HH gg by decoded luminance components '

1O  as 
follows: 
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Finally, the restored image can be obtained by 

converting )ˆ,ˆ,( 32
'
1 OOO  into RGB color components. 

Optimization of C/L Ratio Based on  
Visual Perception 

In the proposed method, the color components are 
drastically compressed by using the spatial frequency 
characteristics in the S-CIELAB. So, the restored image 
should be verified in the S-CIELAB space. This section will 
modify the C/L ratio to optimize in the S-CIELAB. In the S-
CIELAB model, each component ),,( 321 OOO  is perceived 
through two-dimensional separable spatial kernels 

),,( 321 fff of the following formula, respectively. 

,;)()()(' 32,1,jyx,fyx,Oyx,O j
jj =⊗=  

nconvolusio:⊗  
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Fig2. Process of optimization of C/L ratio.

 

 

Figure 2. Process of optimization of C/L ratio. 
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The spatial kernel of each component is obtained by 

mixing two or three Gaussian distribution. Table 1 shows an 
example of parameters of kernels which are determined 
depending on viewing conditions. As shown in Table 1, the 
sensitivity of chromatic components becomes lower than 
luminance components remarkably.  

In this model, the color difference between original 
components ),( 32 OO and restored components )ˆ,ˆ( 32 OO is 
calculated throughout the spatial kernel, and the C/L 
components are optimized to minimize the difference. The 
model, we call S-CIELAB model, is schematized in Fig. 2. 

 

Table 1. An Example of Parameters for S-CIELAB 
Kernels. 

 j
iw  j

iσ  
Luminance O1 

(i=1~3) 
0.921 
0.105 
-0.108 

0.0283 
0.133 
4.336 

Red-Green O2 

(i=1~2) 
0.531 
0.330 

0.0392 
0.494 

Blue-Yellow O3 

(i=1~2) 
0.488 
0.371 

0.0536 
0.386 

 

Experimental Result 

Experiments for comparing with wavelet transform 
algorithm were performed on the viewpoints of color 
reproduction error and the compression rate using natural 
full color test images in SHIPP. 

Figure 3 shows restored ‘bottle’ images with 4% and 
6% compression ratio by the proposed basic model and the 
proposed S-CIELAB model. The image size is 120 x 160. 
Wavelet transform coding at the compression ratio 1/10 was 
commonly applied to the luminance components coding. 
The total compression ratio depends on the block size of 
subsampling. If 10 x 10 pixels are subsampled into one 
block region, the chromatic components are compressed into 
1/100, respectively.  
 As shown in Fig. 3, effective results were obtained 
subjectively and the improvement of image quality can be 
confirmed by using S-CIELAB model. Especially, the color 
of red bottle was improved remarkably and the color of 
yellow fruits was not improved. The result shows that the 
error of O2 components (red-green) was larger than O3 
components (yellow-blue), and it is in agreement with the 
vision characteristics. In our algorithm, the same 
subsampling ratio is used for both O2 and O3 components. 
In order to reflect vision model strictly, it is necessary to 
change the subsampling ratio by O2 and O3 components. 
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  Compression rate 6%             Compression rate 4% 
(a) The proposed basic model. 

 

 

Compression rate 6%             Compression rate 4% 
(b) The proposed S-CIELAB model. 

Figure 3. Restored images. 

 

Table 2. S-CIELAB Color Difference *
abE∆  Using the 

Proposed Basic Model and the S-CIELAB Model for 
Each Block Size. 

Block size K=4 K=5 K=10 K=20 

Chrominance 
Compression 

ratio 
1/16 1/25 1/100 1/400 

Basic model 6.67 6.91 7.68 8.15 

 S-CIELAB 
model 

6.62 6.88 7.72 8.01 

 
 
 
Table 2 shows an objective evaluation by S-CIELAB 

color difference for the compression ratio. The S-CIELAB 
color difference *

abE∆  is calculated throughout spatial 
kernels and the difference reflects both spatial and color 
sensitivity. Therefore, the S-CIELAB color difference 
computed space-by-space while the conventional CIELAB 
color difference computed pixel-by-pixel. The image quality 
becomes high with increasing the compression ratio, 
because the influence with block distortion becomes small.  
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Figure 4. Relation between the compression ratio and S-CIELAB 

color difference *
abE∆ . 

 
 
Figure 4 shows the S-CIELAB compression ratio vs. 

color difference for the proposed S-CIELAB model and the 
wavelet transform coding. In the case of compression ratio 
over 10%, the wavelet transform coding was a far good 
result from the proposed method. But, the color difference 
does not deteriorate so much for decreasing the compression 
ratio by using the proposed method. So, almost the same 
color difference was obtained at compression ratio around 
5%. The same tendency was acquired also to other images. 
So, the proposed algorithm seems to work in high 
compression rate. 

Consideration of the Algorithm Improvement 

As mentioned above, the proposed model has an improving 
point for reflecting the difference of chrominance sensitivity 
between O2 and O3. In order to solve the problem, the 
subsampling ratio must be changed by O2 and O3 
components. Moreover, subsampling with the lattice block 
region still contains redundancy. The adjacent subsampled 
pixels may have the similar C/L ratio. Therefore, a dynamic 
subsampling should be adopted. For example, quad-tree can 
be applied to subsampling process instead of static block 
size subsampling. More complicated region segmentation 
may be effective for subsampling. 

Conclusions 

This paper proposed an image coding method by using both 
spatial correlation and luminance-chrominance correlation 
in an opponent color space. In our algorithm, opponent color 
components in S-CIELAB were used and the coding was 
optimized to minimize the S-CIELAB color difference. 
Experimental results showed that the proposed algorithm 
works effectively for high compression image coding.  

As the future works, image quality should be improved 
by developing new subsampling algorithm.  
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