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Abstract 

Fusing and hot offset performance are dependent on the 
rheological properties of the toner. In this study, the 
influence of crystalline hyperbranched polymers on these 
properties is investigated. Toner resin blends containing 
these polymers exhibit a low melt viscosity for improved 
fusing and increased high temperature storage modulus for 
good hot offset resistance. In contrast to linear resins, these 
polymers exhibit rapid crystallization behavior and do not 
plasticize the primary toner resin. 

Introduction 

To improve fusing performance, toners which contain up to 
20% of crystalline polymers have been evaluated.1-3 These 
crystalline polymers typically are low in molecular weight 
and have a linear or lightly branched structure.4 However, 
using these polymers can plasticize a toner by decreasing the 
glass transition temperature (Tg) of the primary toner resin. 
This results in poor toner storage stability and poor block 
resistance of printed sheets. The reason for this behavior is 
that crystallization during cooling is usually diffusion 
controlled and is dramatically affected by the presence of the 
primary toner resin. 

Increasing the melt point of the crystalline polymer will 
improve storage stability and block resistance. However, due 
to the higher temperature required before polymer mobility 
occurs, the improvement in fusing is reduced. 

A crystalline polymer should have a relatively low melt 
point and decrease the toner viscosity at low temperature for 
improved fusing. However, it should not decrease the storage 
modulus of the toner at high temperature. This would 
indicate a reduction of the internal cohesive force of the 
toner layer and could lead to a decrease in hot offset 
resistance. The crystalline polymer must not plasticize the 
primary toner resin and should crystallize rapidly upon 
cooling. 

Hyperbranched polymers are highly branched and 
resemble dendritic or tree structures (Figure 1). They 
typically have a lower viscosity than linear polymers that 
have the same chemical composition. The number of chain 
end groups increase geometrically with increasing molecular 
weight. Reaction of the chain end groups with a crystalline 

monomer can give a polymer with a high concentration of 
crystalline groups per molecule. This results in a polymer 
that crystallizes by an intramolecular mechanism5 and is 
independent of its rate of diffusion when used in a toner. 
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Figure 1. Idealized representation of an alkyl ester terminated 
hyperbranched polymer (R=alkyl group) 

Preparation and Properties of Crystalline 
Hyperbranched Polyesters 

Hydroxyl terminated hyperbranched polyesters were synthe-
sized from the reaction of a core molecule, such as trimethyl-
olpropane, and 2,2-dimethylolpropionic acid according to 
standard procedures.6 The hydroxyl groups were then 
esterified with an aliphatic carboxylic acid to form alkyl 
terminated polymers. Crystalline hyperbranched polymers 
(CHBPs) were obtained when the alkyl chain contained at 
least 13 carbons.  

The melting point of the CHBP can be changed by using 
different chain length alkyl end groups. Figure 2 shows the 
relationship of the aliphatic carboxylic acid used in synthesis 
and the melt point of the CHBP. 

IS&T's NIP20: 2004 International Conference on Digital Printing Technologies

78



 

 

Melt point of aliphatic carboxylic acid (ºC)

M
el

t p
o

in
t o

f C
H

B
P

 (º
C

)

50 60 70 80 90

10

20

30

40

50

60

70

 

Figure 2. Influence of the melt point of aliphatic carboxylic acid 
monomer on the melt point of CHBP 

Thermal Properties 

Resin blends were prepared by melt mixing the CHBPs with 
a primary toner resin at 175°C in a glass reactor fitted with a 
paddle stirrer. The primary toner resin is a polyester based on 
the reaction of terephthalic acid and alkoxylated bisphenol A 
diol. This resin is amorphous and has a Tg of 65°C. The 
differential scanning calorimetry (DSC) thermogram of a 
blend containing 10 wt % CHBP is shown in Figure 3. For 
this study, a CHBP with a lower melt point was selected, so 
that transitions for both the CHBP and the primary toner 
resin could be clearly observed in both the heating and 
cooling cycles. 
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Figure 3. DSC thermogram of toner resin blend (10% CHBP) 

 
The Tg of the primary toner polyester was almost 

unchanged when blended with a CHBP, even when 
incorporating up to 20% CHBP. In addition, the melt point 
of the CHBP was not affected by the primary toner resin. For 
comparison, blends were also prepared using an aliphatic 
linear crystalline resin, poly(1,6-hexylene adipate). This 

polymer has approximately the same melt point and 
molecular weight as the CHBP. Even at low use levels, 
blends using the linear resin resulted in a large reduction of 
the Tg of the primary toner resin, and only one thermal 
transition was observed.  The results are shown in Figure 4. 
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Figure 4. Glass transition temperature of toner resin blends  

Rheological Properties 

Despite having a higher molecular weight than the primary 
toner resin, CHBPs have a very low melt viscosity. At 80°C, 
the viscosity of the primary toner polyester is over 230,000 
Pa-s, while that of the CHBP is only 0.4 Pa-s. Resin blends 
containing CHBPs closely follow the log viscosity mixing 
rule: 

log ηblend = φ1 log η1 + φ2 log η2             (1) 

where ηblend is the melt viscosity of the resin blend, η1 and η2 
are the viscosities of individual resins while φ1 and φ2 are the 
volume fractions of each resin. 

Figure 5 shows the melt viscosity of resin blends at 
105°C. Addition of 5 wt. % CHBP decreased the blend 
viscosity by approximately 30 %; 20 wt. % decreased it by 
almost 75 %. 
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Figure 5. Melt viscosity of toner resin blends at 105°C 
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Typical linear crystalline toner resins have a low storage 
modulus and reduce high temperature storage modulus when 
used in a toner. CHBPs also have a low storage modulus. 
However, when incorporated into a resin blend, these 
materials result in an increase in storage modulus at high 
temperature. This effect is shown in Figure 6 and the extra 
elasticity is probably due to the shape relaxation of the 
dispersed phase driven by interfacial tension.7  
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Figure 6 . Storage modulus of toner resin blends at 175°C 

Kinetics of Crystallization 

Because of the rapid crystallization behavior of the CHBPs, 
non-isothermal DSC was used to determine the crystalliza-
tion kinetics upon cooling.  Rate parameters were determined 
by fitting experimental data to the Avrami equation: 

θt = 1 – exp[-(ka t)n]                   (2) 

where θt is the weight fraction of crystallized polymer at time 
t, ka is the crystallization rate constant and n is a parameter 
that depends on the shape of the crystalline structures and the 
nucleation process. The total degree of crystallization (Xc) 
was calculated by comparing the enthalpy of crystallization 
during cooling to the original enthalpy of melting. CHBPs 
crystallize faster when the cooling rate is increased.  The 
results for experiments using a cooling rate of 10°C per 
minute are listed in Table 1. 

 
Table 1. Non-Isothermal Crystallization Kinetics 

CHBP 
[wt %] 

ka 
[sec-1] 

n Xc 
a) 

[%] 

100 0.0575 1.13 86.5 

20 0.0371 1.32 90.9 

15 0.0327 1.43 93.0 

10 0.0282 1.69 90.1 

5 0.0252 2.07 94.0 
a) Degree of crystallization during cooling cycle 

 

Although there was a trend for a lower rate of 
crystallization with increasing amount of primary toner resin, 
the effect is not large. In each of the blends, the CHBP 
regained >90% of its crystalline structure during cooling. 
This is virtually identical to the behavior of pure CHBP. In 
contrast, poly(1,6-hexylene adipate) showed rapid 
crystallization in the pure state, but when blended shows no 
tendency to crystallize even after several weeks. 

Hydroxyl functional hyperbranched polymers were 
reacted with different levels of a crystalline aliphatic 
carboxylic acid monomer. Table 2 shows the effect that the 
number of crystalline end groups has on the physical 
properties of the CHBP.   

 
 

Table 2. Physical Properties of CHBPs 
CHBP a) f b) Tm c) 

[oC] 
η d) 

[Pa-s ] 

H-85 35 48.2 2.4 

H-75 31 47.5 2.9 

H-65 26 47.1 5.9 

H-55 22 46.0 12.8 

H-45 18 45.2 32.3 

H-35 14 44.6 134.0 

H-25 10 44.3 1119 
a) Numeric designation refers to the percentage of hydroxyl 

groups reacted 
b) Average number of crystalline alkyl end groups per 

molecule (calculated) 
c) Melting point from DSC 
d) Melt viscosity at 55°C 

 
 
Table 3. Crystallization of CHBPs in Resin Blends (10 wt 
% CHBP) 

CHBP ka 
[ sec-1] 

n Xc 

[%] 

H-85 0.0327 1.34 95.1 

H-75 0.0259 1.56 92.9 
H-65 0.0219 1.59 91.3 
H-55 0.0215 1.41 81.5 

H-45 0.0185 1.33 66.3 

H-35 0.0237 1.05 66.3 
H-25 0.0317 1.63 62.1 

 
 
In blends with the primary toner resin, it was observed 

that lowering the average number of crystalline groups per 
molecule results in less CHBP regaining its crystalline 
structure during cooling (Table 3). The crystallization rate, 
for the portion that does crystallize, was similar for each of 
these polymers. This suggests that a critical level of 
crystalline functionality per molecule is required for 
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intramolecular crystallization to occur. Despite the reduced 
crystallinity of some of the CHBPs, the Tg of the primary 
toner resin was not noticeably affected. 

Conclusions 

Blending CHBPs with polyester toner resins gave reduced 
viscosity at low temperature and increased storage modulus 
at high temperature. Crystallization of these polymers was 
rapid, even in the presence of a high level of amorphous 
resin. The Tg of the primary toner resin was not significantly 
reduced. 
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