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Abstract 

Three kinds of studies have been carried out on the statics 
and dynamics of carrier bead chains in an electromagnetic 
field to solve the three questions, that is, how the mechanical 
properties of chains are in a high magnetic field, what the 
effect of friction between beads is, and how the properties of 
chains vary by the introduction of toner particles. The 
followings were deduced from the experimental, theoretical 
and numerical investigations. (1) By the measurement on 
length and population of chains in the high magnetic field up 
to 1.0 T, reductions in these properties with the increase in 
magnetic field were observed in the field more than 0.1 T 
and the characteristics were confirmed by the numerical 
calculation with the Distinct Element Method. (2) The 
observation of chain forming process in oil, where the effect 
of friction between particles was supposed to be negligible, 
showed a good agreement with the theoretically estimated 
value by the assumption of the potential energy mini-
mization. (3) The magnetic effect of toner particles on the 
chain length is negligible while the electric effect on the 
electric pull-off properties of chains is significant. 

Introduction 

A schematic drawing of a two-component development 
process1 used for high-speed and/or color laser printers is 
shown in Fig. 1. Magnetized carrier beads in the magnetic 
field created by a stationary permanent magnet form chain 
clusters on a rotatory sleeve. Toner particles attached 
electrostatically to these magnetic bead chains are 
transported with rotation of the sleeve. In the development 
area, electrostatic force acts on toner particles and they move 
to photoreceptor surface to form real images. The qualities of 
images closely depend on the properties of chains. 

Length, stiffness, and electrostatic pull-off character-
istics of the chain have been already investigated in the 
previous studies2-4 by experiments with a solenoid coil, 
theoretical discussion with the assumption of the potential 
energy minimization,5 and numerical simulation of chain 
forming process by the Distinct Element Method.6 It has 
been clarified how the chain configuration is determined in 
the magnetic field. However, we still have three questions to 
be clarified, that is, how the mechanical properties of chains 
are in an extremely high magnetic field, what the effect of 
friction between beads is, and how the properties of chains 
vary by the introduction of toner particles. Then we 
performed three kinds of experimental, theoretical and 
numerical studies. One was the observation and calculation 
of chain formation under high magnetic field created by a 
superconducting coil that created field up to 1.0 T. The 
second was a chain formation experiment in oil to reduce an 
effect of friction between the beads and the last was 
measurement of the length and electrostatic pull-off 
characteristics of carrier bead chains with toner particles. 
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Figure 1. Two-component development process for laser printers. 
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Motion of Carrier Beads in a Magnetic Field 

Basic Equation 
The 3D momentum equation of a bead j in a magnetic 

field with six degrees of freedom, (x, y, z, θx, θy, θz) is 
expressed by Eq. 1, where (x, y, z) is the Cartesian 
coordinate vector and (θx, θy, θz) is the rotational angle vector. 
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In Eq. 1, mechanical contact force and moment, Fc and 

Mc, the magnetic force and moment, Fm and Mm, air drag, 
and the gravity are considered, where mj, Ij and aj are the 
mass, inertia and diameter of the j-th bead respectively, η is 
viscous coefficient and g is gravity acceleration. The 
equation can be solved numerically by the Distinct Element 
Method6 and motions of beads can be clarified 
quantitatively. 

To discuss the motion of magnetic carrier beads in the 
magnetic field, magnetic interactions between beads and 
field is important. Paranjpe discussed these interactions and 
potential energy.5 The magnetic force Fmj to the j-th bead 
with the magnetic dipole moment pj are given by the 
following expression under the assumption that each bead 
behaves as a magnetic dipole placed at the center of the bead. 

 ( ) jjmj BpF ∇⋅= . (2) 

The magnetic flux density Bj at the position of the j-th bead 
and magnetic moment pj are 
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where N is the number of particles, µ0 is the permeability of 
free space, µ  is the relative permeability of beads and rkj is 
the position vector from the k-th to the j-th bead. 
 
Potential Energy 

Stable configurations of chains are supposed to be 
determined to minimize their potential energy. The total 
potential energy is given by the sum of magnetic energy Um 
expressed by Eq. 5 and gravitational energy. 
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Models for the estimation of potential energy are shown in 
Fig. 2 that assumes a single chain. 
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Figure 2. Single chain model for energy estimation. 

Chains in a High Magnetic Field 

Experimental Method 
The observation of chain forming process in a high 

magnetic field was carried out with a superconducting coil 
(HF12-100VNT, Sumitomo Heavy Industries, Ltd.) shown in 
Fig. 3. The coil creates maximum field at 12 T at the center 
of coil and 1.5 T field at the top of the coil. In the chain 
formation experiment, the magnetic flux density was swept 
up and down at 1.87 mT/s rate. Axial component of the field 
at the top of the coil Bz(z) can be approximated by a linear 
equation, 

 ( ) ( )czBzBz −= 10 , (6) 

where B0 (= 1.47 T, maximum value at z = 0) and c  
(= 0.00973 1/m) are constants and z (m) is the axial 
coordinate (z = 0 at the top of the coil). 

Soft magnetic particles, with 88 µm in diameter, 3620 
kg/m3 in volume density, 4.7 in relative permeability and 
0.13-0.64 kg/m2 in surface loading, were provided in a vessel 
mounted on the coil. The chain forming process was 
observed by a digital video camera. The lengths and intervals 
of the chains were quantified in the recorded images. 
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Figure 3. Superconducting coil and experimental setup. 
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Results 
The observed chain profiles are shown in Fig. 4. The 

length and interval increased with the increase in the 
magnetic field if the magnetic field is less than 0.1 T, as 
shown in Fig. 4 (a)-(c). These results were already confirmed 
in the previous study.2 On the other hand, they did not grow 
in (c)-(e) and decreased in both length and interval in (e)-(f). 

Simulated chain profiles with the Distinct Element 
Method are shown in Fig. 5. The results qualitatively agreed 
with the experimental observation that the length and interval 
increased in the field up to 0.1 T and then decreased in the 
field from 0.1 to 1.0 T. 

The chain length and interval are plotted in Fig. 6 with 
respect to the magnetic flux density. As shown in Fig. 4 and 
5, the length and interval increased with increase in magnetic 
field up to 0.1 T, then became almost constant from 0.1 to 
0.6 T, and decreased in the extremely high field. These 
features can be explained by the concept of the potential 
energy minimization2 because the numerical calculations, in 
which mechanical, magnetic and gravitational forces are 
included, agreed with the experimental results qualitatively. 
In addition, elastic energy of chains must be considered for 
the quantitative evaluation. 
 
 

 

(a) 0 sec (0.01 T) (b) 20 sec (0.03 T) 

(c) 1 min (0.08 T) (d) 5 min (0.40 T) 

(e) 10 min (0.80 T) (f) 13 min (1.20 T)  

Figure 4. Profiles of chains in the experiment using 
superconducting coil. 

 
 

 

(a) 0.01 T (b) 0.1 T (c) 0.5 T (d) 1.0 T  

Figure 5. Simulated results of chain forming process. 
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(a) Chain length 

ch
ai

n 
in

te
rv

al
 [m

m
]

magnetic flux density [T]

exp.
0.64 kg/m2

0.38 kg/m2

0.13 kg/m2

num.
0.64 kg/m2

10-3 10-2 10-1 100 101
0.0

0.5

1.0

1.5

2.0

2.5

3.0

 
(b) Chain interval 

Figure 6. Chain length and interval varying with magnetic field. 
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Figure 7. Experimental setup of chain formation in oil. 

Chains in Oil 

Experimental Method 
Chain formation experiment in oil was carried out by a 

setup shown in Fig. 7. A solenoid coil was used as a 
generator of magnetic field. An axial component of the field 
at the top of the coil can be approximated by Eq. 6 but B0 = 
6.16 mT/A (B0 is proportional to coil current) and c = 66.87 
1/m. Formation of chains in commercial salad oil was 
observed by a digital microscope (Keyence Corp., VH-7000). 

Results 
The observed chain forming process in oil is shown in 

Fig. 8 comparing with that in air.3 Chains were formed in oil 
same as in air. However it took approximately two seconds 
to form chains while it took just 30 milliseconds in air. In 
addition, dispersion of beads by magnetic repulsive forces 
when the magnetic field was just applied was not observed in 
oil. These features in oil resulted from highly viscous force. 
As a result, thick and uniform chains were formed. 

Simulated chain profiles in oil and in air are shown in 
Fig. 9. In the calculation for those in oil, the friction 
coefficient was set to zero and the viscous coefficient of oil 
was set to 0.1 Pa·s. The experimental and numerical values 
of the chain formation time, length and interval are listed in 
Table 1. The formation times and intervals between chains 
are larger and chain lengths are smaller in oil than those in 
air. The simulated results agreed with the experimental 
results qualitatively. It was shown that these differences in 
the formation time and chain configurations were due to the 
difference in friction and viscosity in oil and in air. 

 

Table 1. Comparison of Properties of Chains Formed in 
Oil with That in Air. 

Oil Air 
  

Exp. Cal. Exp. Cal. 

Viscous coefficient [µPa·s] 105 105 18.2 18.2 
Formation time [s] 2.07 1.85 0.030 0.026 
Chain length [mm] 2.36 0.97 3.61 1.68 
Intervals of chain [mm] 0.56 0.38 0.41 0.35 
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Figure 8. Comparison of chain forming process in oil 
with that in air. 

 
 

(b) Air (a) Oil  

Figure 9. Comparison of simulated profiles of chains in oil 
with that in air. 
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Figure 10. Comparison of theoretically estimated chain length 
with experimental results. 

 
The theoretically estimated chain length and experi-

mental results in oil are plotted in Fig. 10. The theoretical 
values were calculated by the potential energy minimization 
theory, where a single line shaped chain shown in Fig. 2 (a) 
was assumed and the effect of friction was neglected.2 In this 
experiment, sufficient beads more than 0.64 kg/m2 were 
provided in order to prevent lack of beads to form thick 
chains. From the results, it was shown that theoretical values 
agreed with the experimental quantitatively, because the 
effect of friction was negligible. 

Chains with Toner Particles 

Experimental Method 
Experimental setup for the chain length measurement 

using carrier beads with toner particles was similar to that 
described in Fig. 7 except that oil did not used for this 
experiment, B0 = 14.15 mT/A and c = 61.43 1/m. The electric 
pull-off characteristics of chains with toner particles were 
measured with the setup shown in Fig. 11. The electric field 
was applied statically to chains between a set of parallel 
electrodes with 6.0 mm in gap. When the sufficient electric 
field was applied, carrier beads at the top of chains were 
charged and pulled off by the electrostatic force. The critical 
voltage between electrodes to break chain was recorded and 
it was converted to the electric field intensity. 
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Figure 11. Experimental setup for electric pull-off of chains. 

Results 
Figure 12 shows the measured chain length with and 

without toner particles for 88 µm carrier beads. Toner 
concentration was set at 10 wt%. The lengths did not vary by 
the introduction of toner particles. The results were 
compared to the values calculated by the potential energy 
minimization theory of the single chains as shown in Fig. 2 
(a) and (b). In the case with toner particles, each separation 
between carrier beads was equal to the diameter of a toner 
particle, 5 µm. It was confirmed that toner particles did not 
affect the chain length. 

Electric field intensity to break chains is plotted in Fig. 
13 as a function of toner concentration. The critical electric 
field increased significantly by the introduction of insulative 
toner particles into conductive carrier beads. In addition, 
discontinuous variation is observed in the figure around 6-8 
wt% concentration. The result depended on how many toner 
particles were attached to a carrier bead and it is supposed to 
correspond to the resistance of chains. In Fig. 14, measured 
resistance of a composite layer with carrier beads and toner 
particles are plotted. The layer was 1 mm in thickness and 10 
mm in diameter. The curve is similar to that shown in Fig. 13. 
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Figure 12. Measured and theoretically estimated chain length with 
and without toner particles. 
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Figure 13. Electric field intensity to break chains as a function of 
toner concentration. 
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Figure 14. Resistance of composite layer of carrier beads and 
toner particles as a function of toner concentration. 

Conclusion 

The effects of magnetic field, friction, and introduction of 
toner particles on the properties of carrier bead chains were 
investigated by three kinds of independent studies. It was 
clarified that (1) lengths and intervals of chains increased 
with the increase in magnetic field until 0.1 T but it 
decreased in the higher field, (2) properties of chains formed 
in oil are different from those formed in air by the difference 
in friction and drag forces, and the measured length agree 
with the theoretical values quantitatively and (3) introduction 
of toner particles makes chains highly resistive and pull-off 
field increase significantly while they do not affect the 
lengths of chains. 
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