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Abstract 

Measurements of two component development using a 
magnetic brush with a rotating magnetic core, polymeric 
toner, and insulative, magnetically hard carrier are compared 
to the behavior of conventional two component development 
using a magnetic brush with a fixed magnetic core and 
insulative carrier. Significant differences are observed in the 
characteristics of the two technologies.  

For rotating magnetic brush development, the mass area 
density for deposition of toner onto a conductive substrate 
has exponential time dependence, similar to the charging of a 
capacitor. The Equilibrium Theory for conventional 
development predicts mass area densities proportional to the 
ratio of roller speed to substrate speed. The difference in 
behavior can be attributed to the agitation of the developer 
nap produced by the rotating magnetic core development 
system. 

Introduction 

All high-speed dry electrographic processes use variants of 
magnetic brush technology. In electrophotographic 
applications, particle coverage ranges from approximately 
5% of the image area to 100%, with mass area densities of 
approximately 10 g/m2. Process speeds of approximately 
0.25 to 0.75 m/s are used for typical office applications. 

Several distinct types of magnetic brush technology 
have been commercialized using either conductive or 
insulative carrier and applicator rollers with internal, 
stationary magnetic cores or with rotating magnetic cores.1 
These systems include conductive magnetic brush with a 
fixed magnetic core, insulative magnetic brush with a fixed 
magnetic core, and insulative magnetic brush with a rotating 
magnetic core. This is also described as the rotating 
magnetic brush development system, and is shown in Fig. 1a. 
Most magnetic brush systems have a fixed magnetic core 
that does not rotate, as shown in Fig. 1b. This is commonly 
called the conventional development system.  
Almost all magnetic brush systems used today use insulative 
carrier particles. The carrier can be made of a magnetic, 
conductive material such as iron particles with an insulative 
coating, or the carrier particles can be made of an 
intrinsically non-conductive material, such as a magnetic 
ferrite with a high dielectric constant. Rotating magnetic 

brush development uses non-conductive, magnetic ferrite 
carrier. Conventional systems typically use conductive 
carrier particles with an insulative polymer coating. 
Polymeric toner particles typically have diameter ≥ 9 µm. 

 

 

Figure 1a. Rotating magnetic brush development. The toning shell 
rotates cocurrent with the direction of travel of the receiver. The 
magnetic core rotates countercurrent to the receiver. The 
developer mix of magnetic carrier particles and polymeric toner 
particles is agitated by the rotating magnetic core. 

 

Figure 1b. Conventional development. The developer mix is moved 
only by the rotating shell. 

 
In the usual applications of rotating magnetic brush 

development, the magnetic roller has a cylindrical, 
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conductive shell and a magnetic core that contains bar 
magnets with alternating north and south poles facing the 
receiver. The magnetic carrier particles on the roller form 
chains in the magnetic field of the roller core. This is called 
the developer nap. When adjacent to a north pole or to a 
south pole, the carrier chains are perpendicular to the toning 
shell. Between north and south poles, the magnetic field of 
the core is parallel to the toning shell and the carrier chains 
are approximately parallel to the toning shell. The outer 
surface of the roller, or the toning shell, rotates cocurrent 
with the direction of motion of the receiver. The core rotates 
countercurrent to the receiver. As the core rotates, the carrier 
chains flip in the direction of motion of the receiver.  

In contrast, for conventional development systems 
shown in Fig. 1b having a fixed magnetic core, the developer 
nap on the magnetic brush is static. For conventional 
development, higher process speeds require more rollers. For 
rotating magnetic brush development, higher process speeds 
require faster core speeds and may require more rollers. 

Theoretical Analysis of Development 

The Equilibrium Theory is widely accepted as the 
mechanism of particle deposition with insulative magnetic 
brush development.1 Polymeric toner particles are bound to 
the carrier particles by electrostatic forces and also by surface 
forces. In the Equilibrium Theory, toner is freed from the 
carrier and deposited on the substrate only in three-body 
contact events in which, for electrophotography, the toner 
simultaneously contacts both the carrier and the substrate. 
During this contact event, surface forces between the 
polymeric toner particle and the substrate counteract surface 
forces holding the toner particle to the carrier, and the 
particle is deposited on the substrate by electrostatic forces.  

Rotating magnetic brush development is not described 
by the Equilibrium Theory. Deposition rates for rotating 
magnetic brush development typically exceed predictions of 
the Equilibrium Theory, which does not take into account the 
significant effect of brush agitation produced by the rotating 
magnetic core. 

In the Equilibrium Theory, mass per unit area for 
particle deposition on a substrate is given by (Schein, 1996 
Eq. 6.56) 
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where M/A is mass per unit area in g/cm2, Q/M is the 
charge-to-mass ratio for the polymeric particle in units of 
µC/g, ε0 is the permittivity of free space in F/cm, V is the 
voltage between the substrate and the toning shell, ν is the 
ratio of the velocity of the development roller to the velocity 
of the substrate, and Λ is the dielectric distance from the 
applicator roller electrode to the carrier charge in cm. The 
parameter Λ is usually fitted to experimental data.  

Experimental Results 

Toner was bias developed with a rotating magnetic brush 
directly onto an aluminum substrate on a web press using 
commercially available materials and leveraged hardware 
manufactured by NexPress.  

A black commercial styrene butylacrylate toner (D1; 
NexPress, Rochester, NY) was used. The extruded blend is 
pulverized to powder form and classified to yield a volume 
mean of 11.5 microns by Coulter Counter. A developer was 
prepared with this toner at a concentration of 15 weight 
percent with a strontium ferrite hard magnet core powder 
(Powdertech Corporation, Valparaiso, In) coated with 0.3 
pph of charge agent. The developer was prepared by 
agitating on a paint shaker for 1 minute.  

Results for D1 toner are shown in Fig. 2a and Fig. 2b.  
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Figure 2a. Powder area density for D1 toner as a function of web 
speed. Greater area densities are obtained at high web speed than 
are predicted by the Equilibrium Theory. 

Pow der Area Density vs. 
Deposition Voltage

0

10

20

30

40

50

0 1 2

Deposition Voltage kV

P
o

w
d

er
 A

re
a 

D
en

si
ty

 
g

/(
sq

 m
)

High Setpo ints B lack
D1
Equilibrium Theory

 
Figure 2b. Powder area density for D1 toner as a function of the 
bias voltage used for powder deposition. Greater area densities 
are obtained at high deposition voltages than are predicted by the 
Equilibrium Theory. Web velocity = 1 m/s. 
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All measurements were made with the same core speed 
and shell speed, which were increased from typical electro-
photographic setpoints. Predictions of the Equilibrium 
Theory are also plotted. 

Powder area density for rotating magnetic brush is much 
greater than predicted by the Equilibrium Theory. For 
comparison with the Equilibrium Theory, Λ was determined 
by measuring mass area density with the magnetic core 
stationary, and was found to be approximately 41 to 44 
microns. 

For fixed shell speed, core speed, and bias voltage, the 
mass area density decreases approximately exponentially 
with substrate speed. This is shown in Fig. 3, in which the 
data from Fig. 2a is replotted with area densities obtained 
with slower core speed and shell speed.  

Further analysis based on the transit time through the 
magnetic brush shows that deposition depends on the 
amount of available powder and has time dependence similar 
to a capacitor during charging. Higher powder 
concentrations in the magnetic brush, higher core speeds, 
and higher bias voltages, for example, will increase mass 
area density within limits. With D1, 40 g/m2 has been 
obtained at 2 m/s web speed. 
 

Log Plot of Powder Area
Density vs. Web Speed
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Figure 3. Powder area density for D1 toner at two magnetic brush 
setpoints, showing exponential behavior. Bias voltage = 1000 V. 

Conclusion 

Rotating magnetic brush development has been used with 
bias development to produce mass area densities of 30 g/m2 

and greater at substrate speeds of 2 m/s. Exponential 
dependence on substrate speed was observed. The 
Equilibrium Theory predicts that mass area density is 
proportional to the ratio of roller speed to substrate speed. 
The difference is probably due to increased agitation in the 
developer nap for the rotating magnetic brush compared to 
conventional development systems with fixed magnetic 
cores. 

The hardware setpoints used in these experiments were 
optimized to maximize mass area density and process speed, 
and are modified from setpoints typically used in 
electrophotography. Imaging systems have additional 
requirements for uniform development of large black areas of 
an image and uniform width for lines, independent of the 
direction of the line with respect to the process direction. 
The maximum number of toner particles in the background 
areas of the image, or in the white areas of the image, must 
also be tightly controlled.  

Relaxing the requirements for variable images allows 
magnetic brush development, and particularly rotating 
magnetic brush development, to operate at much higher 
speeds than are typically used for imaging systems, and to 
produce much larger mass area densities. Also, a much wider 
range of mass area density can be obtained than is needed for 
images.  
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