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Abstract 

Structural color is of significant research interest as it may 
yield novel coloring systems that use neither dyes nor 
pigments. The origin of their coloring principle is their 
extremely minute physical structures, the sizes of which 
are comparable to the wavelengths of light. Structural color 
is observed in many organisms such as insects, shells, and 
birds, and models of their coloring mechanisms have been 
proposed. This study aims to confirm the mechanisms of 
the structural color of different organisms. Coloring 
mechanisms of a Jewel beetle, a Morpho butterfly, a 
Turban shell, and a Peacock, for which models have been 
suggested, are verified by observing their colors when (1) 
the colored surfaces are immersed in two liquids with of 
different refractive indices, and (2) through a polarizing 
filter. The results invalidate one of the conventional 
explanations for the jewel beetle: a grating structure on a 
Jewel beetle was not agreed by our experimental results. 
For the Morpho butterfly, the results suggest a better 
explanation, a grating structure, than the conventional one: 
multilayer reflection. This decision is supported by the 
results of a spectrum analysis. Our approach to the 
examination of structural color mechanisms can be 
expected to suggest new imaging systems that are 
completely different from the systems in current use.  

1. Introduction 

Taking our cue from the world of nature, color systems 
based on minute physical structures should be possible. 
The key is structure size; it should be roughly equivalent to 
the wavelengths of visible light to create light interference 
effects. Such systems have exciting since they use neither 
dyes nor pigments. 

Let’s compare the coloring principle of the structural 
color with that of conventional dyes and pigments. The 
coloring principle of pigments has two parts: light
absorption (transformation from light energy into electron 
energy) and radiation (transformation from electron energy 
into light energy). On the other hand, the coloring principle 
of the structural color arises from the light interference 
effects, including diffraction and scattering, created by 
minute physical structures on the light path. 

The goal of this study is to realize a novel imaging 
system based on structural color. The first step of this study 

is to investigate the structural colors of such as insects, 
birds, and shells. The microscopic structures of the surfaces 
of these organisms have already been investigated using 
electron microscopy: their extremely fine structures have 
suggested different structural coloring mechanisms, but no 
detailed analyses or groupings of such mechanisms have 
been published. 

This study aims to verify and group the mechanisms of 
structural color exhibited by various organisms. Coloring 
mechanisms of a Jewel beetle, a Morpho butterfly, a 
Turban shell, and a Peacock, for which models have 
already been published, were verified, as a first step. Our 
verification process included observing the colors seen 
when the colored surfaces were immersed in liquids of 
different refractive indices (Experiment 1), and when 
observed under a polarizing filter (Experiment 2). The 
Morpho butterfly, whose color changed strongly with the 
liquid’s refractive index, was subject to a further 
investigation. In Experiment 3, we measured the reflection 
spectrum of Morpho butterfly scales to elucidate which 
kind of interference mechanism dominated the coloring 
systems. 

2. Verifying Structural Coloring Mechanisms 
of Various Organisms (Experiments 1, 2) 

2.1 Experimental Methods 
In Experiment 1, colored surfaces of a Jewel beetle, a 

Morpho butterfly, a Turban shell, and a Peacock feather 
were observed when immersed in two liquids of different 
refractive indices (Fig.1): ethanol (n=1.36) and toluene 
(n=1.49).5 In Experiment 2, the surfaces were observed 
when placed under a polarizing filter. The observed colors 
and changes in color were used to assess the validity of the 
traditional explanations of coloring mechanisms of each 
organism. 

2.2 Results of Experiments 1 and 2 
The results of Experiment 1 are shown in Table 1. No 

change in color was observed for the Jewel beetle, the 
Peacock, and the Turban shell. The Morpho butterfly was 
the only organism whose color changed. The observed 
change is shown in Fig.2. In Experiment 2, the Jewel 
beetle yielded the only change: a slight change from green 
to blue. 
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Figure 1. Observation of surfaces in ethanol or toluene 

  

Figure 2. Appearance change of a Morpho butterfly absorbed in 
ethanol or toluene 

Table 1. Appearance of four surfaces immersed in 
ethanol and toluene 

Coloring change by liquids 
Sample of 

observation Air 
(n=1.0) 

Ethanol (n=1.3) Toluene (n=1.5) 

Jewel 
beetle 

Green Green 
(Slightly 
bluish) 

Green 
(Slightly darkish) 

Turban 
shell 

Opal Opal Opal 

Peacock Yellow 
Green 
Blue 

Yellow 
Green 
Blue 

Yellow 
Green 
Blue 

Morpho 
butterfly 

Blue Light Green Brown 
(Transparent) 

2.3 Discussion of Experiments 1 and 2 
Table 2 summarizes results of Experiments 1 & 2 and 

compares the results gained to those predicted by 
conventional coloring mechanisms for each organism; two 
mechanisms have been suggested for the Jewel beetle. 
More detailed comparisons are given below. 
1) Jewel Beetle: The first conventional explanation, the 

color mechanism is a diffraction grating, is 
contradicted because there was virtually no color 
change in the immersion test. 

  On the other hand, the second explanation, the 
surface consists of cholesteric liquid crystal material, 
was supported by the color change seen under the 
polarizer. 

2) Turban shell: The conventional explanation of 
interference created by thin film layers was not 
contraindicated by either test. 

3) Peacock: The conventional mechanism, interference 
by Mie scattering, is contraindicated by the immersion 
test but not the polarizing test: no color change was 
observed. The conventional explanation cannot be 
categorically denied because it is rather doubtful that 
the liquids permeated the structure fully in our test. 

4) Morpho butterfly: The conventional explanation, 
interference by reflections among multiple layers, is 
supported by the immersion test, and not denied by the 
polarizing test. It should be noted that another 
explanation, its surface structure acts as a diffraction 
grating7 is also supported by the results of these two 
experiments. 
 
We grouped, based on these results, the coloring 

mechanisms, and tested surfaces into three groups: thin 
film type, minute structure type, and cholesteric liquid 
crystal type. 
 
 

 

Figure 3. Cross section of scales of a Morpho butterfly（SEM 
observation） 

1µｍ 

IS&T's NIP19: 2003 International Conference on Digital Printing Technologies

873



 

Table 2. Color change of four organisms 

 
 

3. Further Study on Morpho Butterfly  

3.1 Purpose of Further Study  
We compare two color mechanisms for the Morpho 

butterfly: the conventional mechanism of interference by 
reflection among multiple layers, and the new explanation 
of a diffraction grating within the surface structure. 

The conventional explanation is that the structural 
color of the Morpho butterfly is caused by the interference 
established by a multilayer film. However, the observed 
image by SEM (Fig.3) could allow us to find not only 
multilayer structure, as seen as multi-shelves, but also a 
grooved grating structure on it. The dependence of the 
surface’s reflection characteristics on lighting directions 
was measured; only if the surface has the characteristics of 
a grating structure should it show a drastic dependence on 
direction.  

3.2 Experimental Method (Experiment 3) 
The reflectance and spectrum of light reflected from a 

scale of a Morpho butterfly was measured on two axes: 
parallel and perpendicular to the micro grooves on the 
scale. The directions tested are shown in Fig. 4 as (c→d, 
d→c, a→b, b→a). 

 
Figure 4. Four measurement directions on the scales of a 
Morpho butterfly: c→d, d→c, a→b, b→a. 
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Figure 5. Reflection spectrum on direction parallel to grooves on 
scales of a Morpho butterfly 
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Figure 6. Reflection spectrum on direction perpendicular to 
grooves on scales of a Morpho butterfly  

Experiment 1 Experiment 2 

Color change in the 
test liquids Observed 

organisms 
The traditional 

theory ethanol toluene 

Agreement or 
disagreement 

to 
conventional 
explanations 

Changes by 
polarizing 

plate 

Agreement or 
disagreement 

to 
conventional 
explanations 

Summarized 
conclusion on 
mechanisms 

Cholesteric liquid 
crystal2 

Agree Agree 
Jewel beetle 

Grating1 

almost 
none 

almost 
none 

Disagree 

Change 

Disagree 

Cholesteric 
liquid crystal 

type. 
Turban shell Interference on thin 

film layer 
None None Agree None Agree Thin film type 

Peacock Interference by Mie 
scattering,4 

None None Disagree None Agree 

Morpho 
butterfly 

Interference by 
reflection among 
multiple layers3 

Change Change Agree None Agree 

Minute 
structure type. 
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3.3 Experimental Results 
The measured spectra are shown in Fig. 5 

(perpendicular) and Fig. 6 (parallel). The reflection 
spectrum captured on direction (c) shows a remarkable 
peak at around 500 nm: the color observed was brilliant 
blue. The reflection spectrum on the opposite direction 
shows, on the other hand, no peaks anywhere and very 
small reflectance at short-wavelength: the color observed 
was brown. The reflectance on both parallel directions was 
rather flat; the color observed was brown. 
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Figure 7. A relation between grooves of grating and wavelength 
of reflection light 

3.4 Discussion of Experiment 3 
The spectrum characteristics support the existence of a 

grating structure. We note that the reflection spectrum 
corresponding to blue color appearance was observed only 
perpendicular to the grooves. 

The pitch needed to realize blue reflection is 
calculated theoretically for a grating as follows.  

d (sinα + sinβ) = mλ (m = 0, ±1, ±2…)  

 d: groove spacing,   α: angle of incidence   
 β: angle of diffraction,   m: grating constant 
 λ: wavelength 

 
The angle of incidence α is 0° and the angle of 

diffraction β is 45° at the condition used in Experiment 3. 
The number m is 1 when we deal with primary diffraction 
light. The wavelength λ of diffraction (reflection) light is 
given by: 

 λ = d × sin45° 

The calculated relation between λ and d is shown in 
Fig. 7, groove spacing (d) in the range of 0.1 µm to 1.0 
µm. When we assume λ = 500 nm, which is the observed 
peak wavelength for the Morpho butterfly, the calculated 
groove spacing of the grating d equals 0.7 µm. This 
calculated groove spacing agrees with the spacing (0.5 - 
0.8 µm) observed in the SEM image shown in Fig. 3. 

An unsolved question is why the scales exhibited color 
diffraction from just one direction: a clear blue. 
Explanations include unexpected sample inclination or 
some more complicated anisotropic structure than a simple 
grating. These assumptions should be verified in the next 
stage of this study. 

 
4. Summary 

 
The structural color mechanisms of organisms were studied 
for the purpose of developing a novel color imaging system. 
Main results are summarized as follows. 
1) The conventional explanations of structural coloring 

mechanisms were verified for various organisms by 
observing their colors when immersed in liquids of 
different refractive indices (Experiment 1), and when 
placed under a polarizing filter (Experiment 2). One key 
result is that the grating structure advanced for the jewel 
beetle did not match by our experimental results. 

2) For the Morpho butterfly, we advanced the new 
explanation of a grating structure as a rival to the 
conventional mechanism of multilayer reflection. This 
explanation is supported by all the results of our 
experiments including the experiment that conducted a 
spectrum analysis (Experiment 3). The conventional 
explanation is not supported by this third experiment. 
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