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Abstract 

An accurate printer model that is efficient enough to be used 
in halftoning applications is proposed. The printer model 
utilizes a physical model to train Adaptive Linear 
Combiners (ALCs), after which the average exposure of 
each pixel for any input pattern can be calculated using the 
optimized weight vector. The average exposure is then 
converted to the corresponding potential, which is rendered 
as an 8-bit grayscale image using the arctangent function. 
Scanned printouts and model outputs of various test images 
are presented. 
 This grayscale rendering method can be used to model 
pulse width modulation for template-based applications. 
Grayscale images from the model using laser pulse width 
modulated input images with different sets of templates are 
presented with measurements. Grayscale images from the 
model very closely resemble scanned images. 

Introduction 

The purpose of a printer model is to accurately predict the 
gray level of a binary image produced by a printer. Printer 
models are widely used in various digital halftoning 
algorithms to efficiently improve the print quality of laser 
printers.1-4 Typical printer models assume a constant gray 
level for a pixel. Although the eye responds only to the 
average gray level over the site, a physical development 
quantity such as toner mass and reflectance must be 
examined in the continuous spatial domain in order to 
account for the complex interactions among dots. Yi 
presented one such physical model for predicting PC 
surface exposure energy5 and extended his model to predict 
gray level and developed toner mass.6 Such physical printer 
models are computationally expensive since the physical 

equations, first of all, are fairly complex, and obtaining a 
reasonable average gray level for a pixel requires numerous 
calculation points per pixel; thus, it is not efficient to use a 
physical model directly in digital halftoning algorithms. To 
overcome this inherent disadvantage of physical models, 
Wells et al. introduced an approach to printer modeling 
based upon signal processing techniques.7 They used Yi’s 
physical model5 to train an adaptive signal processing 
model (SPM) offline. Once trained, the SPM can be used to 
accurately predict the average exposure over each pixel in a 
finite window for a given laser pulse width (Figure 1). 
Isolated exposure profiles are then linearly superimposed as 
the SPM window moves across the bitmap. In this paper, we 
present an empirical procedure for estimating output 
grayscales from the SPM’s average exposure values and 
validate our approach with scanned images from two test 
devices.  
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Figure 1. SPM window 
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Templates 

The two test printers, Printer A and Printer B, used in this 
work achieve their output resolution of 1200 dpi by a 
patented resolution enhancement technique,8-10 where every 
other 1200 dpi laser scan line is skipped (requiring a laser 
scan resolution of 600 dpi in the vertical direction) and 
1200 dpi dots between two 600 dpi scan lines are produced 
by laser pulse width modulation (PWM), as illustrated in 
Figure 2. In Figure 2(a), the scanning position of laser beam 
is at the center of the pixels in the second row. In this case, 
the size of one pixel represents the printer resolution (about 
42 µm for a 600 dpi printer). To increase this optical 
resolution by a factor of two, one must be able to place two 
vertically adjacent pixels between two scan lines, as 
illustrated in Figure 2(b). The pixels between the scan lines 
are created by appropriately interleaving isolated exposure 
profiles.8-10  
 A set of 4x3 templates completely determines the laser 
pulse width at the center of each sliding 4x3 window, as 
illustrated in Figure 3, via the standard lookup table method. 
An example template set developed at the MRC institute is 
shown in Figure 4. Desired 1200 dpi dots are indicated with 
black pixels; white pixels represent no development; gray 
pixels are don’t cares. The hexadecimal digit under each 
template represents the matching 6-bit pulse width. The 
templates in Figure 4 determine the pulse width based solely 
on the desired output bits of each window’s center column.  
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Figure 2. Resolution enhancement 

Gray Level vs. Potential 

Once exposure is obtained from the SPM, knowledge of 
how exposure and voltage interact with each other can be 
utilized in obtaining the photoreceptor surface potential. 
The relationship between exposure and voltage is called the 
Photo Induced Discharge Characteristics (PIDC). The PIDC 
of a printer family is obtained from physical measurements. 
A curve fit method using the simplex algorithm is employed 
to approximate the voltage at an arbitrary exposure level.5 A 
typical PIDC curve is shown in Figure 5. 
 In our experiment on Printer A, a 1/3 inch × 1/3 inch 
image consisting of one constant gray level was converted 
into a halftoned bitmap. The halftoned binary bitmap no 
longer consists of one gray level, and its darkness can only 

be expressed in terms of %-coverage, which is the ratio of 
the area occupied by the black pixels to the total image area. 
Note that gray level-% and %-coverage are equivalent 
measures (the former represents the darkness of a grayscale 
image and the latter the darkness of a halftoned bitmap). 
The converted bitmap was printed and then scanned using a 
high resolution scanner. Each of the digitized image pixels 
has a gray value ranging from 0 to 255. Calibration curve 
data were obtained by calculating the average gray level of 
the scanned image and the average potential from the SPM 
and PIDC. This process was repeated for various gray levels 
and the collected data are shown in Figure 6 (diamond 
markers). The measured gray level variation, in Figure 6, as 
a function of average potential resembles an arctangent 
transition. Average potential values were fitted to the 
measured average gray levels using the following equation 
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Figure 3. Pulse width and exposure calculation 
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Figure 4. Example templates 
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where a and Vshift are the image contrast and brightness 
parameters, respectively, and gmax and gmin are the maximum 
and minimum gray levels (that g(V) can reach), respectively. 
The resulting gray level calibration curve for Printer A is 
shown in Figure 6 (solid line). Using this calibration curve, 
the average gray level of each of the test patterns used in 
our experiment was obtained by calculating 

1. potentials using the SPM and PIDC, 
2. gray levels from (1), and 
3. the average of the gray levels obtained in 2. 

 
The predicted average gray levels for the test patterns 

are shown in Figure 6 (x markers). The average estimation 
error between the measured and predicted average gray 
levels is ±4.38 in gray level. Our experiment on Printer B 
was conducted in the same manner and yielded an average 
estimation error of ±4.37 in gray level. 

Images from Printer A 

Two sets of templates, Template Set A and B, were tested 
on Printer A. Template Set A is shown in Figure 4. 
Template Set B contains the optimized 1200 dpi templates 
for Printer A. Consider the bitmap shown in Figure 7. The 
size of this 1200 dpi image is about 1.5 inch × 1.8 inch. 
Using Template Set A, the generated pulse widths are 
shown in Figure 8. Note that the horizontal and vertical 
resolutions of the pulse width plot are 1200 and 600 dpi, 
respectively. Predicted grayscales from our model and a 
scanned image printed from the bitmap in Figure 7 are 

shown in Figures 9 and 10, respectively. The dark oval 
center region in Figure 10 is not apparent in either the 
original bitmap or the pulse width image, but it is accurately 
predicted in the simulated grayscale image.  
 Figures 11 and 12 show predicted and scanned 
grayscales of Lena, respectively, using Template Set B. The 
optimized templates in Template Set B seem to accurately 
depict this complex 1200 dpi image. The modeled 
grayscales closely resemble the scanned image. However, 
the predicted grayscale image seems to show more contrast 
(resulting in a sharper image). We suspect that this is mainly 
due to calibration error and unmodeled factors such as toner 
scattering, which can make images look blurred. 

 
Figure 5. A typical PIDC curve 

 
Figure 6. Calibration curve for Printer A 

Images from Printer B 

Two sets of templates, Template Set C and D, were tested on 
Printer B. Template Set C contains the optimized 1200 dpi 
templates for Printer B. Template Set D employs reduced 
pulse widths for lighter printouts. Figures 13 and 14 show 
predicted and scanned grayscales of halftone strips using 
Template Set C, respectively. The printed gray ramp at each 
halftone frequency is rendered smoothly without noticeable 
halftone artifacts and the modeled counterpart shows much 
the same halftone result.  
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Figure 7. 1200 dpi bitmap (Image used by permission of Spencer 
& Associates Publishing, Ltd.) 

 

 

Figure 8. Grayscale rendition of generated pulse widths using 
Template Set A 

 

 

Figure 9. Predicted grayscale image using Template Set A 

 

 

 

Figure 10. Scanned grayscale image using Template Set A 
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Figure 11. Predicted grayscale image using Template Set B 

 
Figure 12. Scanned grayscale image using Template Set B 

  
Figures 15 and 16 show predicted and scanned 

grayscales of the bitmap in Figure 7, respectively. The 
darkest center region in both images is rendered with a gray 
mid tone. This is an artifact arising from the templates used 
to create lighter prints. 

Concluding Remarks 

An accurate and efficient printer model for template-based 
applications and an empirical calibration method were 
presented. To validate our approach, scanned printouts and 
model outputs of various test images and using two test 
printers and four template sets were presented. We verified 
that grayscale images from the model very closely resemble 

scanned images. However, we found that there are small 
discrepancies between predicted scanned grayscales. We 
suspect that this is mainly due to calibration error and toner 
scattering. 

 
Figure 13. Predicted grayscales using Template Set C 

 
Figure 14. Scanned grayscales using Template Set C 
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Figure 15. Predicted grayscales using Template Set D 

 

Figure 16. Scanned grayscales using Template Set D 
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