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Abstract

In this paper, the conditions required for convexity of 
chromaticity diagrams are discussed. We derive a general 
solution of color matching functions to satisfy convexity of 
chromaticity diagrams. Using the general solution, analysis 
related to the shape of color matching functions are 
performed which is impossible without the general solution. 
The results of this paper will contribute to a systematization 
of color matching functions from a view point of theoretical 
framework. 

Introduction

In the field of color science,1 there are several research 
issues that have not been covered to date, although they are 
considered to be of fundamental significance. The analysis 
of conditions related to color matching functions to satisfy 
the convexity of chromaticity diagrams is one of such 
issues.

In past studies, the convexity of chromaticity diagrams 
was investigated whether or not it is satisfied with given 
color matching functions,2,3 but the general solution of color 
matching functions which satisfies convexity of the 
chromaticity diagrams has not yet been derived.  

In this paper, we derive a general solution of color 
matching functions to satisfy convexity of chromaticity 
diagrams.4 Using the general solution, an analysis related to 
the shape of color matching functions is performed which is 
impossible without the general solution. Using the general 
solution, a theorem related to the shape of color matching 
functions is provided. Related to the theorem, an example of 
non-convexity chromatic diagram is indicated. The results 
of this paper will contribute to a systematization of color 
matching functions from the theoretical point of view. 

Basic Strategy 

In the problem discussed in this study, when changes in the 
tangential direction in a two-dimensional coordinate system 
are considered, a function of yxf ,tan  is inevitably 
included in differential equations describing the problem, 
and the equations become complicated. Accordingly, this 
problem has not been explicitly solved analytically. When 
equations are formulated for this problem with differential 
equations in a two-dimensional coordinate system, it is 
difficult to solve the differential equations; therefore, we 
describe the problem as being formulated by equivalent 
differential equations in a one-dimensional coordinate 
system. To realize this, the xy coordinate is rotated, and 
only the one-dimensional first-order and second-order 
differential equations in the y direction are considered for a 
local maximum point in the y direction. Rotation is 
performed around the origin 0,0 , and is performed with 
respect to the sampling points on the wavelength range ,
so that the tangential line at the wavelengths become 
horizontal by that rotation of amount . Rotation is 
performed in the clockwise direction. With respect to c(1)
< c (2)  < c (n), the corresponding ( c(1)), ( c(2))

, < ( c(n)) exist, where c  takes constant values on 
sampling points indexed 1  to n . As an initial state, if we 
assume that rotation is performed at the position where the 
tangential line for c(1) becomes horizontal, the relationship 
of ( c(1)) < ( c(2)) <  < ( c(n)) holds under the 
prerequisite of establishment of convexity. 

 Figure 1 shows a process in which  has the minus 
value (a), and  has the plus value (b). On xy  axis 
coincidence, 0 .
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Figure 1(a) (left), (b) (right) 

Differential Equations and Solution 

x , y , z  are assumed to be color matching 
functions. For simplicity, we assume that the following 
equation holds. 

zyxu .         (1)

The coordinate values (x*,y*) to realize the local 
maximum point of the chromaticity diagram by rotation and 
displacement are obtained as 
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: rotation matrix, 

:
c

 the rotational angle at which a tangential line at 
sampling points on the wavelength range  becomes 
horizontal, where c takes constant values on sampling 
points, 

With respect to y* in eq. (2), let us consider conditions 
with which the first-order differential becomes 0 and 
upward convexity is achieved. 

Condition With Which First-Order Differential 
Becomes 0 

For simplicity, let assume 
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Then, the following equation holds. 
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Due to the condition that the numerator of Eq.(4) = 0, 
the following equations hold. 
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By integrating both sides of Eq.(6), the following 
equations are derived. 

)8(0

)7(loglog

1

1

u

v
e

Kuv

K

where

:
1

K  Integral constant (arbitrary constant). 

Since u0 ,

yrxrv
43

0 ,    (9) 

holds. 

Condition With Which Upward Convexity is Realized 
The following condition to realize upper convexity is 

provided. 

.0

/2 4

2

2

*2

uuuuvuv

uuvuv
d

yd

  (10) 

Because of Eq. (5), the second term of the numerator in 
Eq.(10) is 0. The first term of the numerator in Eq.(10) is 

.22 uuvuvuuvuv  (11) 

Since the following equation holds in Eq.(11) due to 
the condition of Eq.(10), 

uvuv0 ,         (12) 

we set  

.
2

Kuvuv       (13) 

where,
2

K  is a parameter to express Eq.(12) as the 
equality Eq.(13), which satisfies 

2
0 K .
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General Solution Regarding x

 Equation (13) is expressed as follows with regard to 
x , y , z .

xyrzryrxyrzryr
433433

zyrzyrK
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,S   (14) 

where

.
442

zyrzyrKS   (15) 

To simplify this equation, assuming that  

,
433
yrzryrQ     (16) 

Eq. (14) can be expressed as 

,SxQxQ       (17) 

which is the second-order differential equation to be solved. 
 First, a particular solution for Eq.(17) is obtained. The 

particular solution is a solution of the following equation. 

.0xQxQ        (18) 

The particular solution sx  can be easily obtained in 
the following form. 

.0
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s
  (19) 

The non-zero condition in Eq.(19) is the condition for 
the integral operations following. 

 Next, a general solution is obtained using d’Alembert’s 
method5, in which the following equation (Eq.(20)) that are 
based on the particular solution are designated to be the 
solution of the differential equation. 

s
xhH ,       (20) 

sss
xhxhxhH 2 .   (21)

By substituting H  and H  into Eq.(17), the 
following equation is derived. 
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By rearranging Eq.(22), 
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If we assume that 
1

hh  in Eq.(23), Eq.(23) 
becomes a first-order differential equation with respect to 

1
h , as follows. 
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This first-order differential equation with respect to 
1

h  can be solved based on a general method; first, we 
obtain solutions for the following linear homogenous 
differential equation. 
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A solution for Eq.(25) can be obtained as 
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Solutions for nonlinear homogenous differential 
equations can be obtained using d’Alembert’s formula5 as 
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The integration for both sides of Eq.(27) derives the 
following equation. 
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where

3
K , :

4
K  Integral constant. 

The sum of the general solution 
s

xhH  and 
the particular solution of Eq.(19) is the solution x  for the 
differential equation (17). 

hxx
s

1 .     (29) 

This is a general function form of x .

The Relationship Between  and 
 For solutions that are discretized and obtained with 

respect to the wavelength n
ccc

21 ,
corresponding n

ccc
,,2,1  exist; and the 

relationship of 
maxmin

21 n
ccc

holds under the prerequisite of convexity, where 
min

 and 
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 are the minimum and the maximum angles, 
respectively. There exists sufficient large n  with which the 
relations of 

1
1 ii

cc
 and 

2
1 ii

cc

are satisfied for given values of 
1
,

2
. All of relations 

between  and which hold this relationships in the 
solution framework of Eq.(29) are accepted for the 
solutions. It is assumed that, n  takes sufficient large finite 
value for approximation. 

General Solution Regarding y

 The solution is derived in the same way as x

follows.
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432
,, KKK : Identical definition in the section of x .

The general solutions of x  and y  are constrained 
by the condition of Eq.(9). 

General Solution Regarding z
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Shape Structure Analysis Using the
General Solution 

In general, it has been recognized that color matching 
functions are basically smooth. Using the general solution 
derived in the previous chapter, an analysis related to the 
shape of color matching functions is performed which is 
impossible without the general solution.  

[Assumption]
Color matching functions are assumed to be continuous 

functions. 

[Theorem]
For color matching functions satisfying convexity of its 

chromaticity diagram, if there is at least one non-smooth 
function in x , y , z , the rest functions should also 
be non-smooth functions on the same wavelength (case I). 
The other case satisfying convexity is that all of color 
matching functions are smooth functions (case II). Where, 
non-smooth implies that there is at least one curve point on 
which the first-order difference is discontinuous. 

Proof
Generally, the following characteristics have been 

proved.

Characteristic 1 
Operations between continuous functions result in a 

continuous function, and operations between smooth 
functions result in a smooth function. 

Characteristic 2 
Operations between a non-smooth function and a 

smooth function result in a non-smooth function. 
 Let assume x  to be a non-smooth function.  
 In Eq.(32), 2/1

s
y  in the first term is a continuous 

function from Characteristic 1, because x , z ,
3

r ,
4

r

are continuous functions. dS  in the second term is a 

continuous function because of the integral operation, and 
the multiplication between 2/1

s
y  and dS  also results 

in a continuous function from Characteristic 1. In the 
calculation of Eq.(32), the integral calculations make h  a 
smooth function. This can be confirmed from that the first-
order differential of h  becomes a continuous function 
based on the considerations described. In Eq.(30), h1

is also a smooth function from Characteristic 1. In Eq.(30), 
xrzrxry

s 344
 becomes a non-smooth function 

from the assumption and Characteristic 2, and the 
multiplication between 

s
y  and h1  (Eq.(30)) 

becomes a non-smooth function from Characteristic 2. In 
the same way, Eq.(34) becomes a non-smooth function. 
Here, it is proved that if x  is a non-smooth function, 
y  and z  should be non-smooth functions. 

 In the case of that y  is non-smooth, or z  is non-
smooth, the same proofs can be provided. 

 Based on Eqs.(29),(30),(34), the other case that all of 
color matching functions are smooth functions can be 
proved easily from Characteristic 1. 

 The theorem indicates that there are two cases that all 
of color matching functions are smooth functions, or all of 
color matching functions are non-smooth functions under 
the assumption of convexity of its chromaticity diagram. 
This is a new knowledge related to color matching 
functions.

Examples Related to Theorem 
Figure 2 is an example of color matching functions for 

non-convexity, and Figures 3 is corresponding chromaticity 
diagram, respectively. In figure 2, a part of color matching 
functions which does not satisfy Theorem exists near 
440nm and the result of Figure 3 has a non-convex part. 
The color matching functions of Figure 2 is sampled in 1nm 
wavelength and can be seem to be the original and the non-
smooth parts are included in only one of the original color 
matching functions of x , y , z . The non-convexity 
characteristics are included in the original color matching 
functions. This case does not correspond to one of the two 
cases for convexity in Theorem. Where the original implies 
that the sampling interval is sufficiently small in practice.  
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Figure 2. Example of color matching functions for non-convexity. 
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Figure 3. Chromaticity diagram (Fig.2 color matching functions). 

Also it has been confirmed that the color matching 
functions of Figure 2 does not satisfy Eqs.(29)(30)(34). 

The considerations described above are from Theorem 
derived from the general solution. The existence of the 
general solution enabled the analysis related to the 
numerical example.

Conclusions

In this paper, we derived a general solution of color 
matching functions which satisfy the convexity of the 
chromaticity diagram. The solution is an original result, and 
applied to shape structure analysis related to color matching 
functions. A theorem derived from the general solution 

indicated that there are two cases that all of color matching 
functions are smooth functions, or all of color matching 
functions are non-smooth functions under the assumption of 
convexity of its chromaticity diagram. This is a new 
knowledge related to color matching functions. Numerical 
example was corresponded to the theorem included.
Without the general solution, it was impossible to derive the 
new knowledge, and it will be a strong tool for various 
problems related to color matching functions. 

Hereafter, we will apply the general solution to other 
problems unsolved. 
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