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Abstract  

Gamut Mapping between display and print images is a most 
typical application. Current gamut mapping algorithm 
(GMA) is mostly addressed to compress the out-of-gamut 
colors into the inside of printer gamut. Indeed, the highly 
saturated gamut images such as CG images on monitor are 
necessary to be compressed to make the appearance 
matching to print. However, the printer gamut has been 
much expanded with the improvements in printing media 
and devices. Hence, source image doesn’t always fill the 
entire device gamut, and sometimes its’ gamut need to be 
enlarged to get the better color renditions. This paper 
proposes an advanced GMA designed to work dependent on 
the image color distributions. The proposed GMA includes 
two types of mappings, one for compression and other for 
expansion of the image gamut. A quick decision whether 
image is compressed or expanded, is decided using both 
printer and image gamut. 

Introduction 

The proposed system selects the compression GMA or 
extension GMA whether the image gamut is obviously 
larger or extremely smaller than printer gamut. Figure 1 
shows how a CG image gamut is larger and a natural scene 
gamut is smaller than the inkjet printer gamut. Figure 2 
illustrates the process diagram of the proposed GMA. In the 
compression GMA, the source colors are mapped into the 
inside of printer gamut based on the image-to-device 3D 
gamut boundary relations. We proposed a method for 
comparing the gamut between image and device, where the 
device and image color distributions are divided into small 
segments by discrete polar angle. There, the maximum 
radial vectors for image and device are extracted and 
compared in each segment. The gamut shell is described as 
the simple radial distances, named r-image. The key point 
in this compression GMA is to use the relations in only two 
vectors in each divided segment. While in the extension 
GMA, the image gamut is stretched to the Gaussian 
distribution function as a target in lightness and chroma 
histograms. The extension GMA is aimed to preferred color 
reproduction. 
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Figure 1. Two types of image vs. device gamut relations 
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Figure 2. Diagram of proposed gamut mapping system 
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3D Gamut Compression 

Image-to-Device Mapping 
In the current 2D D-D GMA,1,2 the source color s is 

mapped to the destination t in relation to the monitor gamut 
boundary vs. printer’s boundary toward a focal point p. 
However, the saturation and gradation losses will happen 
after the mapping, because the image color distributions 
don’t always fill the entire monitor gamut. While, the I-D 
GMA3,4,5,9 uses the image gamut boundary i, then it can 
suppress such losses in minimum (See Fig. 3).     

Since the 2D mapping is done in a hue segmented 
Lightness-Chroma (L-C) plane, the unwanted artifacts often 
appear when passing across the one hue leaf to another. 
Here we extended the 2D I-D into seamless 3D I-D GMA3. 
 
The key points to success in 3D GMA are  
• Extraction of 3D image Gamut Surface & Description 
• Use of Non-linear Mapping Function  
• Mapping into Multi-Focal Points depending on 

lightness distribution 
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Figure 3.  Basic Concept of I-D (Image-to-Device) GMA in 2D 

Extraction of 3D Image Gamut Surface  
We have developed an automatic gamut surface 

extract-ion algorithm8 from a random color distribution as 
shown in Fig. 4. The random color distributions of source 
image in the CIELAB space are segmented by a constant 
polar angle step, that is, ∆θ in hue angle and ∆φ in sector 
angle between a color vector and the lightness axis. In 
general, the image color center [L*0,a*0,b*0] should be 
defined as a gravity center. However, to perform GMA, the 
center must be placed at the same point for both printer and 
images. Here the center was set at a neutral point 
[L*0,a*0,b*0] = [50,0,0]. 
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We define the radial matrix rgamut whose element is 
given by the maximum radial vector in each polar angle 
segment.8 The image gamut is described by the radial matrix 
rgamut (See Fig. 4). 
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Figure 4.  3D Gamut surface extraction method  

 

Figure 5.  Gamut surface of “wool” 

Definition of r-image 
Figure 5(a) and (b) show the sRGB test image “wool” 

and its color map in CIELAB. The extracted maximum 

IS&T's NIP19: 2003 International Conference on Digital Printing Technologies

813



 

 

radial vectors are shown in Fig. 5(c), and (d) is its gamut 
shell rendered by connecting these radial vectors. We 
proposed to replace the 3D radial vectors 2D distance array 
arranged in rectangular lattice point (j,k), named r-image. 
Figure 5(e) shows the r-image represented as a 2D gray 
scale image segmented in 16 ×16 discrete angles. Figure 
5(f) shows its 3D representation in Cartesian coordinates. A 
gamut volume is intelligibly visualized in this 3D view. 

Nonlinear Gamma Compression Function 
In 3D CIELAB space, a source color s is mapped to 

target t along the mapping line toward focal point p 
referencing to the image gamut boundary i and output 
device gamut boundary o as given by the following vector 
notations. 
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Here, γ represents the gamma-compression coefficient. 
The GMA works as linear compression for γ=1, and as 

nonlinear compression for 0<γ<1. 

Mapping Towards Multi-Focal Points 
In the design of GMA, the mapping direction to a focal 

point is very important. To keep the natural lightness, a 
mapping into the multi-focal points is desirable. We took 
the control parameters, plower and pupper into account to setting 
the multi-focal points.9 Here plower and pupper are placed at the 
minimum and the maximum L* points where the gamut 
boundary slope is changed from high to low and low to high 
respectively. Image and printer lightness are divided by 
polar angles under plower and over pupper, and by the parallel 
segments between plower and pupper. Figure 6(b) shows the 
overview of the multi-focal point method with two 
convergent lightness points of plower and pupper. In the ink-jet 
printer used in this experiment, plower and pupper were set to 
[L*

0, a
*

0, b
*

0]= [58, 0, 0] and [L*

0, a
*

0, b
*

0]=[45, 0, 0]. 
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Figure 6. Decision of multi-focal points by ILD method 

3D Gamut Compression Result 
A psychophysical experiment has been carried out to 

compare the color appearance matching between the 

original CRT image and the printed image after mapping. 
Three kinds of test images, one CG image and two sRGB 
images were used for this experiment. In our I-D GMA 
experiments, the three different mapping conditions were 
set to (1): single-focal with gamma-compression coefficient 

γ=0.8, (2): multi-focal with γ=0.8, (3): multi-focal with 
γ=0.5. The proposed I-D GMA was compared with (5): D-D 
GMA and (4): the Clipping GMA. Both were also 
performed in 3D divided segment. Figure 7 shows the 
evaluation results for test images. In every picture, D-D 
GMA obviously showed the worst result. The result clearly 
shows that the mapping to the multi-focal points generally 
give the better image appearances. In case of the image 
“wool”, however, Clipping GMA got the better score. The 
selection of GMA types with optimal mapping parameters is 
dependent of image contents and fully automatic process is 
left for future works. 
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Figure 7. Evaluation Result of Psychophysical Experimet. 

Gamut Extension for De-saturated Image 

Objectives of Image Gamut Extension 
The major objective of gamut extension is to recover 

the degraded colors taken under insufficient illumination or 
faded colors after long preservation. It is difficult to restore 
the lost original colors exactly, but possible to recover the 
pleasant colors by gamut extension. Sometimes, the pictures 
even if taken by digital camera, only fill the narrow gamut 
ranges as compared with modern wide gamut media such as 
hi-fi inkjet print and hoped to be corrected to vivid colors.  

Gamut Extension by Color Histogram Specification 
We proposed an image gamut extension method based 

on Histogram Specification (HS). 6,7 To simplify the process, 
the histograms of luminance and chrominance are extended 
separately in CIELAB space as the following steps. 

 
(1) RGB to LAB conversion 
(2) Gaussian HS for L component 
(3) Segmentation of chroma component 
(4) Gaussian HS for chroma component 
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Gaussian Histogram Specification for Y image 
Histogram Equalization (HE) method is useful to 

expand the reduced dynamic ranges of monochrome image. 
However, HE can’t be applied to tri-color images, because 
it causes unnatural and unbalanced color appearance. There 
is no definitive solution to what shapes of the color 
histogram are comfortable. In our experiments, Gaussian 
histogram was an effective candidate to create the natural 
and pleasant images. First, the histogram of lightness L is 
converted to the Gaussian distribution through HE as 
follows. 

The original lightness L is transformed to g by HE and 
the histogram p1(L) is flattened to constant pc (g) as 

  g = F(L) = p1(x)dx
0

Y∫ , pc(g) = constant   (4) 

where, p1(L) denotes the probability density of value L 
occurrence. Now, our target histogram p2(z) is Gaussian  
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1(z)p 22
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and z is also equalized into constant p(g) by HE as 

  constant=== ∫ (g)p(x)dxpG(z)g c
z
0 2 ,   (6) 

Thus, connecting two g’s after HE from L to g and z to g, 
the objective transform from L to z is given by the inverse  

z=G-1(g)= G-1(F(L))     (10) 

Gaussian Histogram Specification for Chroma Image 
After the histogram specification of L, the chromin-

ance components are segmented into m divisions by ∆H  in 
hue angle H. Then chroma C of each division is extended 
by Gaussian HS as same as L without changing color hue. 
For example, whole pixels are segmented into totally m = 
16 divisions and each was extended by individual Gaussian 
HS. 

Considerations on Neutral Gray and Multiple Peaks 
Furthermore, the achromatic areas were excluded 

beforehand from the process to avoid the unwanted coloring 
of grayish pixels. Sometimes, the L histogram has not 
always a single peak but multiple peaks. For such cases, the 
histogram was specified to multiple Gaussian distribution 
functions centered at peak positions in original L histogram. 

Figure 8 shows an improved image by gamut extension 
using Gaussian histogram specification. The lightness L 
histogram was specified to multiple Gaussian distribution 
functions and naturally stretched to wide range. The chroma 
was segmented to 16 ∆H division and each division was 
also extended by Gaussian HS algorithm. The picture taken 
in dim light was dramatically improved to comfortable 
image with the bright and vivid colors. 

Conclusion 

The paper proposed an approach to GMA from both sides 
of compression and extension. Two different GMAs were 
introduced, one for compression from wide to narrow and 
the other for extension from narrow to wide gamut. We 
could design the 3D compression GMA logically, but have 
no definitive design rule for the extension GMA at present. 
However both algorithms are based on the common concept 
of “image-dependent”. Future works will be continued to 
find the better gamut extension algorithm based on this 
concept and on the human visual appearance tests. 
 

picture taken in dim light after gamut extension

L histogram in original extended by multiple
Gaussian specification  

Figure 8.  Improved image by gamut extension  
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