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Abstract  

Color gamut boundaries in CIELAB space are determined 
for two CIE standard observers, CIE 1931 2° and CIE 1964 
10°, under two illuminants, D50 and D65, using spectral and 
optimal stimuli. Computational methods and formulas 
based on Grassmann’s law are given. Two-dimensional 
projection of the computed color gamut provides the 
boundary for all possible stimuli, real and imaginary, and 
is the closest analogue to the chromaticity diagram of the 
CIEXYZ or CIELUV space. We also discuss reasons of no 
chromaticity diagram in CIELAB space. This computation 
leads to the derivation of the most saturated primary colors 
for block dyes. Two-dimensional gamut projections of 
several sets of block dyes are then computed under 
conditions of the CIE 1931 color match functions and 
illuminants D50 and D65. The validity of the Grassmann’s 
law is examined for additive and subtractive color mixing 
of block dyes. Finally, color gamut boundaries of two real 
devices are presented for comparisons. 

Introduction 

CIEXYZ space gives a well-defined color gamut boundary 
that is enclosed by spectral stimuli. The gamut boundary is 
computed from color matching functions (CMF), x (λ), 
 y (λ), and z (λ) of the CIE 1931 2° or CIE 1964 10° 
observer by using Eq. (1) to give chromaticity coordinates 
of spectral stimuli.1

 

      (1.1) 

      (1.2) 

where x and y are the chromaticity coordinates and λ is the 
wavelength. The chromaticity diagram is the plot of x vs. 
y. CIE 1931 CMF gives a slightly larger gamut size than 
CIE 1964 CMF in green, blue, and purple regions.  

Similarly, CIELUV has a well-defined gamut 
boundary that is based on CIE 1976 uniform-chromaticity-
scale (UCS) u’ and v’. 

 

  (2.1) 

  (2.2) 

Again, CIE 1931 CMF is larger than CIE 1964 CMF in 
CIELUV, where the gamut size difference between these 
two observers seems to become wider in this space. 

Another frequently used color space CIELAB is 
defined in Eq. (3). 

L* = 116 (Y / Yn)
1/3 – 16,    (3.1) 

a* = 500 [ (X / Xn)
 1/3 – (Y / Yn)

 1/3 ],   (3.2) 

b* = 200 [ (Y / Yn)
 1/3 – (Z / Zn)

 1/3 ],   (3.3) 

where X, Y, and Z are the tristimulus values of the object 
and Xn, Yn, and Zn are the tristimulus values of the 
illuminant. Unlike CIEXYZ and CIELUV spaces, CIELAB 
does not have a chromaticity diagram. As pointed out by 
Bartleson, this is because values of a* and b* depend on 
L*.2 But, this does not mean that there is no gamut 
boundary for CIELAB. As early as 1975, Judd and 
Wyszecki already gave a graphic outer boundary of the 
CIELAB space with respect to illuminant D 65 and CIE 1964 
observer.3 Although the detail was not revealed on how this 
graph was generated, they did mention the use of optimal 
color stimuli. Optimal color stimulus is an imaginary 
stimulus, having two or more spectral components 
(usually, no more than 3 wavelengths) with a unit 
reflectance at the specified wavelength and zero elsewhere. 
No real object surfaces can have this kind of abrupt 
reflectance curves. 

Because of lacking details of the CIELAB gamut 
boundary, the purpose of this paper is trying to fill this gap 
by deriving color gamut boundaries for CIELAB space. 
Along the way, we also try to find the gamut boundary for 
ideal block dyes, determine the optimal spectra for primary 
colors, and check the validity of the Grassmann's law for 
color mixing. 

Color Gamut Boundaries in CIELAB Space 

In an effort to reproduce the graph given by Judd and 
Wyszecki, we perform a series of computations using 
spectral and optimal stimuli of CIE standard observers. 
First, we compute tristimulus values of the spectral stimuli, 
then we compute tristimulus values of all possible two-
component optimal stimuli. These tristimulus values are 
converted to L*, a*, and b* via Eq. (3). For computing 
gamut boundary in CIELAB, tristimulus values of the 
object in Eq. (3) are replaced by a CMF at a given 
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wavelength λ and tristimulus values of the illuminant is 
normalized to Yn=1. 

     (4.1) 

     (4.2) 

     (4.3) 

Two-dimensional projection of CIE spectral stimuli 
under either D50 or D65 in CIELAB shows that stimuli at 
both high- and low-wavelength ends locate near the origin 
of the chromaticity diagram. These results give a concave 
area in the positive a* quadrants encompassed color 
regions from red through magenta to purple. This is 
because stimuli are weak at the both ends of the CMF, 
having a very small brightness and colorfulness. Thus, they 
are perceived as if they were achromatic hues. 

It is a known fact that a single spectral stimulus does 
not give saturated magenta colors. Magenta colors require 
at least two spectral stimuli in proper wavelengths with 
respect to each other. Therefore, we start by computing all 
possible optimal stimuli of two spectral wavelengths in the 
range from 390 nm to 750 nm. This is achieved by fixing 
one stimulus at a wavelength λ1 and moving the other 
stimulus across the whole spectrum at a 5 nm interval, 
starting from λ2=λ1+5 nm until it reaches the other end of 
the spectrum. The first stimulus is then moved to the next 
wavelength and the second stimulus again is scanned 
across the remaining spectrum at the 5 nm interval. This 
procedure is repeated until both stimuli reach the other 
end. Note that the 5 nm interval is an arbitrary choice. One 
can reduce the interval to get more precise wavelength 
location or one can widen the interval to save computation 
cost with some sacrifice of the accuracy. 

We employ Grassmann’s additivity law given in Eq. 
(5) with normalization (actually, this is the averaging 
because Yn is normalized to 1) to compute tristimulus 
values, X, Y, and Z of two stimuli. 

    (5.1) 

    (5.2) 

    (5.3) 

These tristimulus values are then plugged into Eq. (3) 
to obtain CIELAB values. With additional data form two-
component optimal stimuli, we fill the concave area in the 
positive a* quadrants when only spectral stimuli are 
plotted. Connecting outer-most colors produced by optimal 
and spectral stimuli, we obtain the boundary of the 
CIELAB space with respect to the illuminant used. For D 65, 
the resulting gamut looks pretty close to the outer boundary 
given by Judd and Wyszecki.1 We also obtain results for 
other combinations of illuminant and standard observer. 
For CIE 1931 observer under illuminants D50 and D65, D65 
gives a substantial larger area in green, cyan, blue, and 

purple regions, whereas D50 gives a slightly larger area in 
magenta and red regions. CIE 1964 observer under D50 and 
D65 gives a similar trend as in the case of the CIE 1931 
observer. Under the same illuminant, CIE 1964 observer is 
slightly larger than CIE 1931 observer in cyan and blue 
regions, whereas CIE 1931 observer is larger in green, red, 
magenta, and purple regions. Generally speaking, the color 
gamut difference is small with respect to the difference in 
standard observer, but it is large with respect to the 
difference in illuminant used.  

Color Gamut Boundary of Block Dyes 

Block dyes are similar to optimal stimuli in that they are 
also imaginary colorants, having a uniform spectrum of a 
unit reflectance within specified wavelength ranges and 
zero elsewhere. Again, no real colorants process this kind 
of spectra. We generate ideal block dyes by selecting a 
bandwidth and moving it from one end of the visible 
spectrum to the other end. We also produce block dyes 
with complementary spectrum Pc(λ); that is, unit 
reflectance subtracts a block dye spectrum P(λ) across the 
whole visible region, 

 Pc(λ) = 1 – P(λ) .     (6) 

We start at a bandwidth of 10 nm at one end and move 
it at a 10 nm interval for generating a whole series of block 
dyes. We then increase the bandwidth by 10 nm to 
generate next set of block dyes. This procedure is repeated 
until the bandwidth reaches 220 nm. We compute 
tristimulus values of these block dyes by using the CIE 
standard formulation given in Eq. (7).  

            (7.1) 

     (7.2) 

     (7.3) 

    (7.4) 

where P(λ) is the spectrum of an object and I(λ) is the 
spectrum of an illuminant. We then compute CIELAB 
values using Eq. (3) to derive the gamut boundary for 
block dyes. The shape of the two-dimensional gamut 
boundary of block dyes is pretty similar to the 
corresponding boundary of spectral and optimal stimuli 
with a much smaller gamut size, whereas the three-
dimensional gamut shows some similarity to the boundary 
of object-color stimuli given by Judd and Wyszecki. 1 

Ideal Primary Colors of Block Dyes 
Outer boundary of block dyes can be used to find ideal 

primary colorants with respect to color strength. The most 
saturated red has a spectrum with wavelength onset around 
600 nm and cutoff around 680 nm. It is not sensitive to 
broaden the spectrum at long wavelength side because 
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CMF is very weak at the red end. On the short wavelength 
side, we can broaden the spectrum as low as 550 nm, but 
hue is gradually shifted toward orange. 

The most saturated green has a spectrum with 
wavelength between 500 to 560 nm. There are various 
shades of greens; hue shifts toward cyan if we broaden 
short wavelength end of the spectrum and shifts toward 
yellow if we broaden long wavelength end. 

The most saturated blue has a spectrum of [400, 470] 
nm. By shifting a blue spectrum with a fixed bandwidth to 
higher wavelengths, hue gradually changes to cyan. We 
still get blue color when the long wavelength ends around 
510 nm. Similar to shifting, hue gradually changes to cyan 
by broadening the spectrum at long wavelength side. But, 
broadening at short wavelength side is not sensitive to the 
hue shift. This is because CMF is very weak at the blue 
end. We still get blue color with a bandwidth of [390, 520] 
nm. 

The most saturated cyan has a spectrum of [400, 560] 
nm. By broadening cyan spectrum at long wavelength side, 
hue shifts toward green. It is still considered as cyan with a 
bandwidth of [400, 610] nm. The change at short wave-
length side is not sensitive to the hue shift. However, the 
lower bound should be no higher than 430 nm, otherwise 
the hue will be too greenish. To produce wider range of 
greens, the range may be extended to [390, 580] nm.  

The most saturated magenta has a spectrum of [400, 
460] and [600, 700] nm. By extending short wavelength 
side of the red component, hue shifts from purple/blue 
through magenta toward red. By broadening long 
wavelength side of the blue component, hue remains as 
magenta color with a diminished chroma. By reducing blue 
component, hue shifts toward red.  

The most saturated yellow has a spectrum of [540, 
620] nm. By broadening yellow spectrum at long 
wavelength side, hue becomes warmer (toward red). It is 
still considered as yellow with [540, 700] nm bandwidth. 
By broadening short wavelength side, hue becomes cooler 
(toward green). We still get yellow with a bandwidth of 
[490, 700] nm. To make a broad range of greens, 
especially the darker bluish-greens, yellow spectrum 
should be extended to lower wavelengths. Thus, the cool 
yellows are preferred. 

Interestingly, chromaticity coordinates of RGB block 
dyes are pretty close to certain standard RGB primaries 
such as NTSC/RGB or sRGB. This seems to imply that 
behind a simple chromaticity representation of the primary, 
there is an associated block dye spectrum. This association 
is not surprising because many RGB primaries are spectral 
stimuli such as CIE primaries. The chromaticity 
coordinates of a primary can be matched by a block dye if 
we finely tune the spectrum on a wavelength-by-
wavelength basis. 

Additive Color Mixing of Block Dyes 
We compute the color mixing of the most saturated 

RGB block dyes (RGB set #1) to obtain the color gamut. 
For comparison purpose, we perform the same additive 

mixing on a set of RGB block dyes with broader spectra, 
having red at [600, 720] nm, green at [500, 600] nm, blue 
at [390, 500] nm (RGB set #2. In addition, we also 
compute the additive mixing of a set of CMY block dyes 
with cyan at [390, 590] nm, magenta at [390, 490] and 
[590, 750] nm, and yellow at [490, 750] nm (CMY set #2).  

Equation (8) gives the formula of the additive mixing; 
it is a linear combination of block dyes at a given 
wavelength. 

P(λ) = wr Pr(λ) + wg Pg(λ) + wb Pb(λ),   (8) 

where wr, wg, and wb are the weights or concentrations of 
red, green, and blue components, respectively, in the 
mixture, and Pr, Pg, and Pb are the respective reflectance of 
red, green, and blue dyes. The computation indicates that 
RGB set #1 indeed has the largest color gamut. Two-color 
mixtures lie perfectly in lines of a triangle, indicating that 
the additive mixing obeys Grassmann’s law, regardless the 
type of block dyes whether RGB or CMY. Converting to 
CIELAB, the data no longer lie in a straight line, indicating 
that the common practice of connecting R, Y, G, C, B, and 
M primary colors in straight lines is not a good way to 
define color gamut size. 

Subtractive Color Mixing of Block Dyes 
We also compute color gamut formed by the most 

saturated CMY block dyes (CMY set #1) and CMY set #2 
in subtractive mixing. Equation (9) gives the formula of the 
subtractive color mixing at a given wavelength. 

P(λ) = exp-{wclog[Pc(λ)]+wmlog[Pm(λ)]+wylog[Py(λ)]}, (9) 

where wc, wm, and wy are the weights of cyan, magenta, and 
yellow components, respectively, in the mixture, and Pc, 
Pm, and Py are the respective reflectance of cyan, magenta, 
and yellow dyes. The reflectance is converted to optical 
density by taking the logarithm base 10. This logarithm 
conversion poses a problem for block dyes because they 
have zero reflectance at many wavelengths. 
Mathematically, the logarithm of zero is undefined. 
Therefore, a density value must be artificially assigned to 
zero reflectance. We choose to give a maximum density of 
4, which is high enough for most, if not all, practical 
applications. The individual densities of subtractive 
primaries are weighed and combined to give the density of 
the mixture at a given wavelength. Finally, the density is 
converted back to reflectance for computing tristimulus 
and CIELAB values via Eq. (3). 

Based on Eq. (9) with a maximum density of 4, we 
compute the color gamut of CMY block dye set #1 and #2 
under D65 in CIEXYZ and CIELAB spaces. In CIEXYZ 
space, CMY set #2 forms a nearly perfect triangle with 
vertices located in R, G, and B regions. All two-color 
mixtures lie in lines of the triangle. CMY set #1 does not 
give a triangle, instead a pentagon, where two-color 
mixtures fall in lines connecting R, G, C, B, and M 
vertices. The resulting color gamut resembles closely to the 
chromaticity diagram of primaries employed in 
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Donaldson’s six-primary colorimeter.4,5 The difference 
between CMY set #1 and #2 may be attributed to the fact 
that the complementary spectra of CMY set #1 are 
overlapped, whereas complementary spectra of CMY set 
#2 form a continuous white spectrum with no overlapping. 
These computations indicate that Grassmann’s additivity is 
followed, if not strictly obeyed, for block dyes even in the 
subtractive mixing. By transforming to CIELAB, both dye 
sets give a rather curved boundary with six vertices. These 
results reaffirm that the straight-line connection of six 
primaries will give a misled color gamut in CIELAB space.  

In addition, we also compare the computed block dye 
color gamut with two measured real inks. The real inks 
give a pretty straight hexagon shape in CIELAB, indicating 
that the practice of connecting six primaries in straight 
lines is a reasonable approximation. They give a slightly 
curved polygon in CIEXYZ, indicating that they do not 
obey Grassmann’s law, but they can be modeled by other 
color mixing theories that take the complex phenomena of 
absorption, reflection, and transmission into account.6 

Remarks 

The detail formulation and computation of the color gamut 
boundary in CIELAB space are given in this paper. By 
employing Eqs. (4) and (5), the computation indicates that 
there is indeed a gamut boundary in CIELAB space using 
spectral and optimal stimuli. However, unlike chromaticity 
diagrams of CIEXYZ and CIELUV, the size of the gamut 
depends on the illuminant used. The illuminant has a 
significant influence on the size of the gamut boundary in 
CIELAB space, whereas the standard observer only has a 
minor effect. 

Spectral and optimal stimuli obey Grassmann’s law of 
the color mixing. Likewise, block dyes, regardless RGB or 
CMY set, obey Grassmann’s law of the additive color 
mixing. Surprisingly, subtractive block dyes in subtractive 
color mixing follow Grassmann’s law closely, whereas the 
real inks do not. 

From this computation, the common practice of 
connecting six primaries in CIELAB space to give a 
projected two-dimensional color gamut is not a strictly 
correct way of defining a color gamut. However, it is a 

pretty close approximation for real colorants. To have a 
better definition of the color gamut, more two-color 
mixtures should be measured and plotted in CIELAB 
space. 
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